Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO


Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao

a. Tính

LG a

Tính \(\sin {\pi  \over 8}\,\text{ và }\,\cos {\pi  \over 8}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{  & {\sin ^2}{\pi  \over 8} = {{1 - \cos {\pi  \over 4}} \over 2} = {{1 - {{\sqrt 2 } \over 2}} \over 2} = {{2 - \sqrt 2 } \over 4}  \cr  &  \Rightarrow \sin {\pi  \over 8} = {1 \over 2}\sqrt {2 - \sqrt 2 }   \cr  & {\cos ^2}{\pi  \over 8} = {{1 + \cos {\pi  \over 4}} \over 2} = {{1 + {{\sqrt 2 } \over 2}} \over 2} = {{2 + \sqrt 2 } \over 4}  \cr  &  \Rightarrow \cos {\pi  \over 8} = {1 \over 2}\sqrt {2 + \sqrt 2 }  \cr} \)

LG b

Chứng minh rằng có hằng số C > 0 để có đẳng thức

\(\sin x + \left( {\sqrt 2  - 1} \right)\cos x \) \(= C\cos \left( {x - {{3\pi } \over 8}} \right)\) với mọi x.

Lời giải chi tiết:

Ta có:

\(\eqalign{  & {1^2} + {\left( {\sqrt 2  - 1} \right)^2} = 4 - 2\sqrt 2 .\,\text{ Do đó}\,:  \cr  & \sin x + \left( {\sqrt 2  - 1} \right)\cos x  \cr  &  = \left( {\sqrt {4 - 2\sqrt 2 } } \right)\left( {{1 \over {\sqrt {4 - 2\sqrt 2 } }}\sin x + {{\sqrt 2  - 1} \over {\sqrt {4 - 2\sqrt 2 } }}\cos x} \right)  \cr  &  = \sqrt {4 - 2\sqrt 2 } \left( {\sin x\cos {\pi  \over 8} + \sin {\pi  \over 8}\cos x} \right)  \cr  &  = \sqrt {4 - 2\sqrt 2 } \sin \left( {x + {\pi  \over 8}} \right)  \cr  &  = \sqrt {4 - 2\sqrt 2 } \cos \left( {x - {{3\pi } \over 8}} \right)  \cr  & \text{ Vì }\,{1 \over {\sqrt {4 - 2\sqrt 2 } }} = {{\sqrt {4 + 2\sqrt 2 } } \over {\sqrt 8 }} \cr &= {1 \over 2}\sqrt {2 + \sqrt 2 }  = \cos {\pi  \over 8}. \cr & \text{và }\sin \left( {x + \frac{\pi }{8}} \right) = \cos \left( {\frac{\pi }{2} - x - \frac{\pi }{8}} \right) \cr &= \cos \left( {\frac{{3\pi }}{8} - x} \right) = \cos \left( {x - \frac{{3\pi }}{8}} \right) \cr  & \text{Vậy }\,C = \sqrt {4 - 2\sqrt 2 }  \cr} \)


Cùng chủ đề:

Câu 1 trang 120 SGK Hình học 11 Nâng cao
Câu 1 trang 122 SGK Hình học 11 Nâng cao
Câu 1 trang 124 SGK Hình học 11 Nâng cao
Câu 1 trang 130 SGK Đại số và Giải tích 11 Nâng cao
Câu 1 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao
Câu 2 trang 9 SGK Hình học 11 Nâng cao
Câu 2 trang 14 SGK Đại số và Giải tích 11 Nâng cao
Câu 2 trang 34 SGK Hình học 11 Nâng cao
Câu 2 trang 50 SGK Hình học 11 Nâng cao
Câu 2 trang 54 SGK Đại số và Giải tích 11 Nâng cao