Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Một số dạng phương trình lượng giác đơn giản


Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Giải các phương trình sau:

LG a

\(3\cos x + 4\sin x = -5\)

Lời giải chi tiết:

Chia hai vế phương trình cho \(\sqrt {{3^2} + {4^2}} = 5\) ta được :

\(\eqalign{ & {3 \over 5}\cos x + {4 \over 5}\sin x = - 1 \cr&\Leftrightarrow \cos x\cos \alpha + \sin x\sin \alpha = - 1 \cr & \left( {\text{ trong đó }\,\cos \alpha = {3 \over 5}\text { và }\,\sin \alpha = {4 \over 5}} \right) \cr & \Leftrightarrow \cos \left( {x - \alpha } \right) = - 1 \cr&\Leftrightarrow x - \alpha = \pi + k2\pi \cr & \Leftrightarrow x = \pi + \alpha + k2\pi ,k \in Z \cr} \)

LG b

\(2\sin2x – 2\cos2x =  \sqrt 2 \)

Lời giải chi tiết:

Chia hai vế phương trình cho \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \) ta được :

\(\eqalign{& {1 \over {\sqrt 2 }}\sin 2x - {1 \over {\sqrt 2 }}\cos 2x = {1 \over 2} \cr&\Leftrightarrow \sin 2x\cos {\pi \over 4} - \cos 2x\sin {\pi \over 4} = {1 \over 2} \cr & \Leftrightarrow \sin \left( {2x - {\pi \over 4}} \right) = {1 \over 2} \cr&\Leftrightarrow \left[ {\matrix{{2x - {\pi \over 4} = {\pi \over 6} + k2\pi } \cr {2x - {\pi \over 4} = \pi - {\pi \over 6} + k2\pi } \cr} } \right. \cr&\Leftrightarrow \left[ {\matrix{{x = {{5\pi } \over {24}} + k\pi } \cr {x = {{13\pi } \over {24}} + k\pi } \cr} } \right.,k \in \mathbb Z \cr} \)

LG c

\(5\sin2x – 6\cos^2 x = 13\)

Lời giải chi tiết:

\(\eqalign{ & 5\sin 2x - 6{\cos ^2}x = 13\cr& \Leftrightarrow 5\sin 2x - 3\left( {1 + \cos 2x} \right) = 13 \cr &  \Leftrightarrow 5\sin 2x - 3\cos 2x = 16 \cr} \)

Chia cả hai vế cho \(\sqrt {{5^2} + {3^2}} = \sqrt {34} \) ta được :

\({5 \over {\sqrt {34} }}\sin 2x - {3 \over {\sqrt {34} }}\cos 2x = {{16} \over {\sqrt {34} }}\)

Do \({\left( {{5 \over {\sqrt {34} }}} \right)^2} + {\left( {{3 \over {\sqrt {34} }}} \right)^2} = 1\) nên ta chọn được số \(α\) sao cho :

\(\cos \alpha = {5 \over {\sqrt {34} }}\,\text{ và }\,\sin \alpha = {3 \over {\sqrt {34} }}\)

Ta có: \(5\sin 2x - 6{\cos ^2}x = 13 \)

\( \Leftrightarrow \sin 2x\cos \alpha  - \cos 2x\sin \alpha  = \frac{{16}}{{\sqrt {34} }}\)

\(\Leftrightarrow \sin \left( {2x - \alpha } \right) = {{16} \over {\sqrt {34} }} > 1\)

Vậy phương trình đã cho vô nghiệm.


Cùng chủ đề:

Câu 29 trang 117 SGK Hình học 11 Nâng cao
Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao
Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 29 trang 211 SGK Đại số và Giải tích 11 Nâng cao
Câu 30 trang 29 SGK Hình học 11 Nâng cao
Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao
Câu 30 trang 67 SGK Hình học 11 Nâng cao
Câu 30 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 30 trang 117 SGK Hình học 11 Nâng cao
Câu 30 trang 120 SGK Đại số và Giải tích 11 Nâng cao
Câu 30 trang 159 SGK Đại số và Giải tích 11 Nâng cao