Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao
Trong các dãy số dưới đây
Trong các dãy số dưới đây, dãy số nào là cấp số nhân ? Hãy xác định công bội của cấp số nhân đó.
LG a
Dãy số \(1, -2, 4, -8, 16, -32, 64\)
Lời giải chi tiết:
Dãy số đã cho là một cấp số nhân với công bội \(q = -2\).
LG b
Dãy số (u n ) với \({u_n} = n{.6^{n + 1}}\)
Lời giải chi tiết:
\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\left( {n + 1} \right){6^{n + 1}}}}{{n{{.6}^n}}} = \frac{{6\left( {n + 1} \right)}}{n}\) với mọi \(n ≥ 1\).
Do \(\frac{{6\left( {n + 1} \right)}}{n}\) không phải là hằng số nên (u n ) không phải là cấp số nhân.
LG c
Dãy số (v n ) với \({v_n} = {\left( { - 1} \right)^n}{.3^{2n}}\)
Lời giải chi tiết:
\({{{v_{n + 1}}} \over {{v_n}}} = {{{{\left( { - 1} \right)}^{n + 1}}{{.3}^{2\left( {n + 1} \right)}}} \over {{{\left( { - 1} \right)}^n}{{.3}^{2n}}}} = \frac{{ - {{1.3}^{2n + 2}}}}{{{3^{2n}}}} = - 9\) với mọi \(n ≥ 1\).
Suy ra (v n ) là một cấp số nhân với công bội \(q = -9\).
LG d
Dãy số (x n ) với \({x_n} = {\left( { - 4} \right)^{2n + 1}}\) .
Lời giải chi tiết:
\({{{x_{n + 1}}} \over {{x_n}}} = {{{{\left( { - 4} \right)}^{2n + 3}}} \over {{{\left( { - 4} \right)}^{2n + 1}}}} = \frac{{{{\left( { - 4} \right)}^{2n + 1}}.{{\left( { - 4} \right)}^2}}}{{{{\left( { - 4} \right)}^{2n + 1}}}}= 16\) với mọi \(n ≥ 1\).
Suy ra (x n ) là một cấp số nhân với công bội \(q = 16\).