Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Giới hạn một bên


Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

Đề bài

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| - 1\,\text{ với }\,x \le - 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > - 2.} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\) \(\text{ và }\,\mathop {\lim }\limits_{x \to - 2} f\left( x \right)\) (nếu có).

Phương pháp giải - Xem chi tiết

Tìm hàm số ứng với điều kiện của x, từ đó tính giới hạn.

Chú ý:

\(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).

\(x \to x_0^ - \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).

Lời giải chi tiết

Ta có:

\(\eqalign{ & \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)= \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \left( {2\left| x \right| - 1} \right)  \cr &= 2\left| { - 2} \right| - 1 = 3 \cr & \mathop {\lim f(x)}\limits_{x \to {{\left( { - 2} \right)}^ + }} = \mathop {\lim  }\limits_{x \to {{\left( { - 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \cr & \text{Vì }\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)=\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)=3\cr &\Rightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = 3. \cr} \)


Cùng chủ đề:

Câu 29 trang 41 SGK Đại số và Giải tích 11 Nâng cao
Câu 29 trang 67 SGK Hình học 11 Nâng cao
Câu 29 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 29 trang 117 SGK Hình học 11 Nâng cao
Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao
Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 29 trang 211 SGK Đại số và Giải tích 11 Nâng cao
Câu 30 trang 29 SGK Hình học 11 Nâng cao
Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao
Câu 30 trang 67 SGK Hình học 11 Nâng cao
Câu 30 trang 76 SGK Đại số và Giải tích 11 Nâng cao