Câu 45 trang 219 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Đạo hàm cấp cao


Câu 45 trang 219 SGK Đại số và Giải tích 11 Nâng cao

Tìm vi phân của mỗi hàm số sau :

Tìm vi phân của mỗi hàm số sau :

LG a

\(y = {\tan ^2}3x - \cot 3{x^2}\)

Phương pháp giải:

Sử dụng công thức dy=y'dx.

Lời giải chi tiết:

\(y' = 2\tan 3x.\left( {\tan 3x} \right)'\) \( - \left( {3{x^2}} \right)'.\frac{{ - 1}}{{{{\sin }^2}3{x^2}}} \) \(= 2\tan 3x.\left( {3x} \right)'.\frac{1}{{{{\cos }^2}3x}}\) \( + 6x.\left( {1 + {{\cot }^2}3{x^2}} \right) \) \( = 6\tan 3x\left( {1 + {{\tan }^2}3x} \right) \) \( + 6x.\left( {1 + {{\cot }^2}3{x^2}} \right)\)

\(\eqalign{  &  \Rightarrow dy = y'dx \cr &= \left[ {6\tan 3x\left( {1 + {{\tan }^2}3x} \right) + 6x\left( {1 + {{\cot }^2}3{x^2}} \right)} \right]dx \cr} \)

LG b

\(y = \sqrt {{{\cos }^2}2x + 1} \)

Lời giải chi tiết:

\(\eqalign{  & y'  = \frac{{\left( {{{\cos }^2}2x + 1} \right)'}}{{2\sqrt {{{\cos }^2}2x + 1} }}\cr & = \frac{{2\cos 2x.\left( {\cos 2x} \right)'}}{{2\sqrt {{{\cos }^2}2x + 1} }}\cr &= {{2\cos 2x.\left( { - 2\sin 2x} \right)} \over {2\sqrt {{{\cos }^2}2x + 1} }} \cr &= {{ - \sin 4x} \over {\sqrt {{{\cos }^2}2x + 1} }}  \cr  &  \Rightarrow dy = y'dx =  - {{\sin4 x} \over {\sqrt {{{\cos }^2}2x + 1} }}dx \cr} \)


Cùng chủ đề:

Câu 45 trang 47 SGK Đại số và Giải tích 11 Nâng cao
Câu 45 trang 75 SGK Hình học 11 Nâng cao
Câu 45 trang 90 SGK Đại số và Giải tích 11 Nâng cao
Câu 45 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 45 trang 167 SGK Đại số và Giải tích 11 Nâng cao
Câu 45 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 75 SGK Hình học 11 Nâng cao
Câu 46 trang 90 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 172 SGK Đại số và Giải tích 11 Nâng cao