Câu 46 trang 123 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương III


Câu 46 trang 123 SGK Đại số và Giải tích 11 Nâng cao

Cho các dãy số (un)

Cho các dãy số (u n ) và (v n ) với  \({u_n} = {{{n^2} + 1} \over {n + 1}}\text{ và }{v_n} = {{2n} \over {n + 1}}\)

a) Hãy xác định số hạng tổng quát của dãy số (a n ) với a n = u n + v n

b) Hãy xác định số hạng tổng quát của dãy số (b n ) với b n = u n – v n

c) Hãy xác định số hạng tổng quát của dãy số (c n ) với c n = u n .v n

d) Hãy xác định số hạng tổng quát của dãy số (d n ) với  \({d_n} = {{{u_n}} \over {{v_n}}}\)

Chú ý

Các dãy số (a n ), (b n ), (c n ), (d n ) nêu trên thường được kí hiệu tương ứng bởi (u n + v n ), (u n – v n ), (u n .v n ),\(\left( {{{{u_n}} \over {{v_n}}}} \right)\).

LG a

Hãy xác định số hạng tổng quát của dãy số (a n ) với a n = u n + v n

Lời giải chi tiết:

Ta có:

\({a_n} = {u_n} + {v_n} = {{{n^2} + 1} \over {n + 1}} + {{2n} \over {n + 1}} \)

\( = \frac{{{n^2} + 2n + 1}}{{n + 1}}\) \(= {{{{\left( {n + 1} \right)}^2}} \over {n + 1}} = n + 1\)

LG b

Hãy xác định số hạng tổng quát của dãy số (b n ) với b n = u n – v n

Lời giải chi tiết:

Ta có:

\({b_n} = {u_n} - {v_n} = {{{n^2} + 1} \over {n + 1}} - {{2n} \over {n + 1}}\)

\( = \frac{{{n^2} - 2n + 1}}{{n + 1}}= {{{{\left( {n - 1} \right)}^2}} \over {n + 1}}\)

LG c

Hãy xác định số hạng tổng quát của dãy số (c n ) với c n = u n .v n

Lời giải chi tiết:

Ta có:

\({c_n} = {u_n}{v_n} = \frac{{{n^2} + 1}}{{n + 1}}.\frac{{2n}}{{n + 1}}= {{2n\left( {{n^2} + 1} \right)} \over {{{\left( {n + 1} \right)}^2}}}\)

LG d

Hãy xác định số hạng tổng quát của dãy số (d n ) với  \({d_n} = {{{u_n}} \over {{v_n}}}\)

Lời giải chi tiết:

Ta có:

\({d_n} = {{{u_n}} \over {{v_n}}}  = \frac{{{n^2} + 1}}{{n + 1}}:\frac{{2n}}{{n + 1}}\)

\(= \frac{{{n^2} + 1}}{{n + 1}}.\frac{{n + 1}}{{2n}}= {{{n^2} + 1} \over {2n}}\)


Cùng chủ đề:

Câu 45 trang 167 SGK Đại số và Giải tích 11 Nâng cao
Câu 45 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 75 SGK Hình học 11 Nâng cao
Câu 46 trang 90 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 172 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 75 SGK Hình học 11 Nâng cao
Câu 47 trang 91 SGK Đại số và Giải tích 11 Nâng cao