Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương I


Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Giải các phương trình sau :

LG a

\(\sin 2x + {\sin ^2}x = {1 \over 2}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{ & \sin 2x + {\sin ^2}x = {1 \over 2} \cr & \Leftrightarrow \sin 2x + {1 \over 2}\left( {1 - \cos 2x} \right) = {1 \over 2} \cr & \Leftrightarrow \sin 2x - {1 \over 2}\cos 2x = 0 \cr & \Leftrightarrow \tan 2x = {1 \over 2} \cr & \Leftrightarrow 2x = \alpha + k\pi \,\text{ với }\,\tan \alpha = {1 \over 2} \cr & \Leftrightarrow x = {\alpha \over 2} + k{\pi \over 2},\,k \in\mathbb Z \cr} \)

LG b

\(2{\sin ^2}x + 3\sin x\cos x + {\cos ^2}x = 0\)

Lời giải chi tiết:

\(x = {\pi \over 2} + k\pi \) không là nghiệm phương trình.

Chia hai vế phương trình cho \({\cos ^2}x\) ta được :

\(\eqalign{& 2{\tan ^2}x + 3\tan x + 1 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = - 1} \cr {\tan x = - {1 \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr & \left( {\text{ với }\,\tan \alpha = - {1 \over 2}} \right) \cr} \)

LG c

\({\sin ^2}{x \over 2} + \sin x - 2{\cos ^2}{x \over 2} = {1 \over 2}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{ & {\sin ^2}{x \over 2} + \sin x - 2{\cos ^2}{x \over 2} = {1 \over 2} \cr & \Leftrightarrow {\sin ^2}{x \over 2} + 2\sin {x \over 2}\cos {x \over 2} - 2{\cos ^2}{x \over 2} = {1 \over 2} \cr} \)

Với \(x\) mà \(\cos {x \over 2} = 0\) không là nghiệm phương trình.

Chia hai vế phương trình cho \({\cos ^2}{x \over 2}\) ta được :

\(\eqalign{& {\tan ^2}{x \over 2} + 2\tan {x \over 2} - 2 = {1 \over 2}\left( {1 + {{\tan }^2}{x \over 2}} \right) \cr & \Leftrightarrow {\tan ^2}{x \over 2} + 4\tan {x \over 2} - 5 = 0 \cr & \Leftrightarrow \left[ {\matrix{{\tan {x \over 2} = 1} \cr {\tan {x \over 2} = - 5} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 4} + k\pi } \cr {{x \over 2} = \alpha + k\pi } \cr} } \right.\,\left( {\text{ với }\,\tan \alpha = - 5} \right) \cr & \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k2\pi } \cr {x = 2\alpha + k2\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr} \)


Cùng chủ đề:

Câu 46 trang 75 SGK Hình học 11 Nâng cao
Câu 46 trang 90 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 172 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 75 SGK Hình học 11 Nâng cao
Câu 47 trang 91 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 219 SGK Đại số và Giải tích 11 Nâng cao