Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 1 - Đại số 9
Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 1 - Đại số 9
Đề bài
Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :
a. \(A = {1 \over {1 - \sqrt {x - 1} }}\)
b. \(B = {1 \over {\sqrt {{x^2} - 2x + 1} }}\)
Bài 2. Rút gọn :
a. \(M = \left( {4 + \sqrt 3 } \right).\sqrt {19 - 8\sqrt 3 } \)
b. \(N = {{\sqrt {8 - \sqrt {15} } } \over {\sqrt {30} - \sqrt 2 }}\)
Bài 3. Rút gọn biểu thức : \(P = \left( {{{8 - x\sqrt x } \over {2 - \sqrt x }} + 2\sqrt x } \right).{\left( {{{2 - \sqrt x } \over {2 + \sqrt x }}} \right)^2}\,\,\,\)\(\left( {x \ge 0;x \ne 4} \right)\)
Bài 4. Tìm x, biết : \(\left( {3 - \sqrt {2x} } \right).\left( {2 - 3\sqrt {2x} } \right) = 6x - 5\,\left( * \right)\)
Bài 5. Tìm giá trị nhỏ nhất của biểu thức : \(P = \sqrt {{x^2} - 2x + 5} \)
LG bài 1
Phương pháp giải:
Sử dụng: \(\sqrt A \) có nghĩa khi \(A\ge 0\)
Lời giải chi tiết:
a. A có nghĩa khi
\(\eqalign{ & \left\{ {\matrix{ {x - 1 \ge 0} \cr {1 - \sqrt {x - 1} \ne 0} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {x \ge 1} \cr {\sqrt {x - 1} \ne 1} \cr } } \right. \cr & \Leftrightarrow \left\{ {\matrix{ {x \ge 1} \cr {x - 1 \ne 1} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {x \ge 1} \cr {x \ne 2} \cr } } \right. \cr} \)
b. B có nghĩa \( \Leftrightarrow {x^2} - 2x + 1 > 0 \Leftrightarrow {\left( {x - 1} \right)^2} > 0 \)
\(\Leftrightarrow x \ne 1\)
LG bài 2
Phương pháp giải:
Sử dụng: \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
a. Ta có:
\(M = \left( {4 + \sqrt 3 } \right).\sqrt {19 - 8\sqrt 3 } \)
\( = \left( {4 + \sqrt 3 } \right).\sqrt {16 - 2.4\sqrt 3 + 3} \)
\(\eqalign{ &= \left( {4 + \sqrt 3 } \right)\sqrt {{{\left( {4 - \sqrt 3 } \right)}^2}} \cr & = \left( {4 + \sqrt 3 } \right)\left( {4 - \sqrt 3 } \right) \cr & = 16 - 3 = 13 \cr} \)
b. Ta có:
\(\eqalign{ N &= {{\sqrt {8 - \sqrt {15} } } \over {\sqrt 2 \left( {\sqrt {15} - 1} \right)}}\cr& = {{\sqrt {2\left( {8 - \sqrt {15} } \right)} } \over {2\left( {\sqrt {15} - 1} \right)}} \cr & = {{\sqrt {16 - 2\sqrt {15} } .\left( {\sqrt {15} + 1} \right)} \over {2.14}} \cr & = {{\sqrt {{{\left( {\sqrt {15} - 1} \right)}^2}} .\left( {\sqrt {15} + 1} \right)} \over {28}} \cr & = {{\left( {\sqrt {15} - 1} \right)\left( {\sqrt {15} + 1} \right)} \over {28}} \cr&= {{14} \over {28}} = {1 \over 2} \cr} \)
LG bài 3
Phương pháp giải:
Quy đồng và rút gọn P.
Lời giải chi tiết:
Ta có:
\(P = \left( {{{8 - x\sqrt x } \over {2 - \sqrt x }} + 2\sqrt x } \right).{\left( {{{2 - \sqrt x } \over {2 + \sqrt x }}} \right)^2}\,\,\,\)
\(\eqalign{ & = \left[ {{{\left( {2 - \sqrt x } \right)\left( {4 + 2\sqrt x + x} \right)} \over {2 - \sqrt x }} + 2\sqrt x } \right].{{{{\left( {2 - \sqrt x } \right)}^2}} \over {{{\left( {2 + \sqrt x } \right)}^2}}} \cr & = \left( {4 + 2\sqrt x + x + 2\sqrt x } \right).{{{{\left( {2 - \sqrt x } \right)}^2}} \over {{{\left( {2 + \sqrt x } \right)}^2}}} \cr & = {{{{\left( {2 + \sqrt x } \right)}^2}.{{\left( {2 - \sqrt x } \right)}^2}} \over {{{\left( {2 + \sqrt x } \right)}^2}}} \cr & = {\left( {2 - \sqrt x } \right)^2} \cr} \)
LG bài 4
Phương pháp giải:
Đưa về dạng
\(\begin{array}{l} \sqrt {f\left( x \right)} = a\left( {a \ge 0} \right)\\ \Leftrightarrow f\left( x \right) = {a^2} \end{array}\)
Lời giải chi tiết:
Điều kiện: \(x\ge 0\)
Ta có:
\(\left( {3 - \sqrt {2x} } \right).\left( {2 - 3\sqrt {2x} } \right) = 6x - 5\)
\(\eqalign{ & \Leftrightarrow 6 - 9\sqrt {2x} - 2\sqrt {2x} + 6x = 6x - 5 \cr & \Leftrightarrow - 11\sqrt {2x} = - 11 \Leftrightarrow \sqrt {2x} = 1 \cr & \Leftrightarrow 2x = 1 \Leftrightarrow x = {1 \over 2} \,(tm)\cr} \)
Vậy \(x=\dfrac{1}2\)
LG bài 5
Phương pháp giải:
Đánh giá P bằng cách đưa về \(\sqrt {{{\left( {x - a} \right)}^2} + b} \ge \sqrt b \) với \(b\ge 0\)
Lời giải chi tiết:
Ta có:
\(P = \sqrt {{x^2} - 2x + 5} \)
\( = \sqrt {{x^2} - 2x + 1 + 4} \)
\(= \sqrt {{{\left( {x - 1} \right)}^2} + 4} \ge \sqrt 4 = 2\) (vì \({\left( {x - 1} \right)^2} \ge 0\) với mọi x)
Vậy giá trị nhỏ nhất của P bằng 2, đạt được khi \(x – 1 = 0\) hay \(x = 1\).