Giải bài 1 trang 95 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 1. Khoảng biến thiên và khoảng tứ phân vị của mẫu s


Giải bài 1 trang 95 sách bài tập toán 12 - Chân trời sáng tạo

Thời gian đọc sách của một số người cao tuổi trong một tuần được ghi lại ở bảng sau: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến hàng phần trăm.)

Đề bài

Thời gian đọc sách của một số người cao tuổi trong một tuần được ghi lại ở bảng sau:

Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến hàng phần trăm.)

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)

trong đó:

• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;

• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);

• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);

• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

Lời giải chi tiết

\(n = 45 + 34 + 23 + 18 + 5 = 125\)

Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 12 - 2 = 10\) (giờ).

Gọi \({x_1};{x_2};...;{x_{125}}\) là mẫu số liệu gốc gồm thời gian đọc sách của 125 người theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{32}} \in \left[ {2;4} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 2 + \frac{{\frac{{1.125}}{4} - 0}}{{45}}\left( {4 - 2} \right) = \frac{{61}}{{18}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{94}} \in \begin{array}{*{20}{c}}{\left[ {6;8} \right)}\end{array}\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 6 + \frac{{\frac{{3.125}}{4} - \left( {45 + 34} \right)}}{{23}}\left( {8 - 6} \right) = \frac{{335}}{{46}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = \frac{{335}}{{46}} - \frac{{61}}{{18}} = \frac{{806}}{{207}} \approx 3,89\) (giờ).


Cùng chủ đề:

Giải bài 1 trang 77 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 79 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 85 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 95 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 103 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 106 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 108 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 2 trang 8 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo