Processing math: 9%

Giải bài 106 trang 44 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài tập cuối chương 1 - SBT Toán 12 Cánh diều


Giải bài 106 trang 44 sách bài tập toán 12 - Cánh diều

Tìm tiệm cận đứng, tiệm cận ngang và tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{ - 3{rm{x}} + 2}}{{{x^3} + 1}}); b) (y = frac{{{x^2} - 1}}{{2{rm{x}} + 1}}); c) (y = frac{x}{{sqrt {{x^2} + 1} }}).

Đề bài

Tìm tiệm cận đứng, tiệm cận ngang và tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau:

a) y=3x+2x3+1;

b) y=x212x+1;

c) y=xx2+1.

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính lim hoặc \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right), nếu một trong các giới hạn sau thoả mãn:

\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty

thì đường thẳng x = {x_0} là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0} hoặc \mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0} thì đường thẳng y = {y_0} là đường tiệm cận ngang.

‒ Tìm tiệm cận xiên y = ax + b\left( {a \ne 0} \right):

a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x}b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - ax} \right] hoặc

a = \mathop {\lim }\limits_{x \to  - \infty } \frac{{f\left( x \right)}}{x}b = \mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - ax} \right]

Lời giải chi tiết

a) Hàm số có tập xác định là \mathbb{R}\backslash \left\{ { - 1} \right\}.

Ta có:

\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{ - 3{\rm{x}} + 2}}{{{x^3} + 1}} =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{ - 3{\rm{x}} + 2}}{{{x^3} + 1}} =  + \infty

Vậy x =  - 1 là tiệm cận đứng của đồ thị hàm số đã cho.

\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 3{\rm{x}} + 2}}{{{x^3} + 1}} = 0;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 3{\rm{x}} + 2}}{{{x^3} + 1}} = 0

Vậy y = 0 là tiệm cận ngang của đồ thị hàm số đã cho.

b) Hàm số có tập xác định là \mathbb{R}\backslash \left\{ 1 \right\}.

Ta có:

\mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ - }} \frac{{{x^2} - 1}}{{2{\rm{x}} + 1}} =  + \infty ;\mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ + }} \frac{{{x^2} - 1}}{{2{\rm{x}} + 1}} =  - \infty

Vậy {\rm{x}} =  - \frac{1}{2} là tiệm cận đứng của đồ thị hàm số đã cho.

\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 1}}{{2{\rm{x}} + 1}} =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} - 1}}{{2{\rm{x}} + 1}} =  - \infty

Vậy hàm số không có tiệm cận ngang.

a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 1}}{{x\left( {2{\rm{x}} + 1} \right)}} = \frac{1}{2}

b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \frac{1}{2}x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{{x^2} - 1}}{{2{\rm{x}} + 1}} - \frac{1}{2}x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x - 2}}{{2\left( {2{\rm{x}} + 1} \right)}} =  - \frac{1}{4}

Vậy đường thẳng y = \frac{1}{2}x - \frac{1}{4} là tiệm cận xiên của đồ thị hàm số đã cho.

c) Hàm số có tập xác định là \mathbb{R}.

Do đó đồ thị hàm số không có tiệm cận đứng.

Ta có:

\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{x}{{\sqrt {{x^2} + 1} }} = 1;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{x}{{\sqrt {{x^2} + 1} }} =  - 1

Vậy y = 1y =  - 1 là các tiệm cận ngang của đồ thị hàm số đã cho.


Cùng chủ đề:

Giải bài 101 trang 42 sách bài tập toán 12 - Cánh diều
Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều
Giải bài 103 trang 43 sách bài tập toán 12 - Cánh diều
Giải bài 104 trang 43 sách bài tập toán 12 - Cánh diều
Giải bài 105 trang 43 sách bài tập toán 12 - Cánh diều
Giải bài 106 trang 44 sách bài tập toán 12 - Cánh diều
Giải bài 107 trang 44 sách bài tập toán 12 - Cánh diều
Giải bài 108 trang 44 sách bài tập toán 12 - Cánh diều
Giải bài 109 trang 44 sách bài tập toán 12 - Cánh diều
Giải bài 110 trang 44 sách bài tập toán 12 - Cánh diều
Giải bài 111 trang 45 sách bài tập toán 12 - Cánh diều