Giải bài 2. 13 trang 46 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài 6. Vecto trong không gian - SBT Toán 12 Kết nối tri


Giải bài 2.13 trang 46 sách bài tập toán 12 - Kết nối tri thức

Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP và NQ. Chứng minh rằng (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 )

Đề bài

Cho tứ diện ABCD . Gọi M , N , P , Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA . Gọi G là giao điểm của MP NQ. Chứng minh rằng \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)

Phương pháp giải - Xem chi tiết

Chứng minh MNPQ là hình bình hành. Từ đó thực hiện các tính toán với vế trái của đẳng thức cần chứng minh, sử dụng phép cộng vectơ trong hình bình hành, tính chất liên quan đến trung điểm.

Lời giải chi tiết

Xét tam giác ABC M là trung điểm cạnh AB , N là trung điểm cạnh BC, suy ra MN là đường trung bình của tam giác ABC . Vì vậy \(MN\parallel AC\) và \(MN = \frac{1}{2}AC\).

Tương tự ta cũng có PQ là đường trung bình của tam giác ACD do đó \(PQ\parallel AC\) và \(PQ = \frac{1}{2}AC\). Suy ra \(MN\parallel PQ\) và \(MN = PQ\), do đó tứ giác MNPQ là hình bình hành.

Khi đó ta có G là trung điểm của mỗi đường chéo MP NQ.

Suy ra \(\overrightarrow {GM}  =  - \overrightarrow {GP} \) hay \(\overrightarrow {GM}  + \overrightarrow {GP}  = \overrightarrow 0 \).

Ta có: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GM}  + 2\overrightarrow {GP}  = 2\left( {\overrightarrow {GM}  + \overrightarrow {GP} } \right) = \overrightarrow 0 .\)


Cùng chủ đề:

Giải bài 2. 8 trang 45 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 9 trang 45 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 10 trang 45 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 11 trang 45 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 12 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 13 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 14 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 15 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 16 trang 48 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 17 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 18 trang 49 sách bài tập toán 12 - Kết nối tri thức