Giải bài 2. 17 trang 49 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài 7. Hệ trục tọa độ trong không gian - SBT Toán 12 Kế


Giải bài 2.17 trang 49 sách bài tập toán 12 - Kết nối tri thức

Trong không gian \(Oxyz\), xác định tọa độ của điểm \(A\) trong mỗi trường hợp sau: a) \(A\) nằm trên tia \(Oy\) và \(OA = 3\); b) \(A\) nằm trên tia đối của tia \(Oz\) và \(OA = 5\); c) \(A\) nằm trong góc phần tư thứ nhất của mặt phẳng \(\left( {Oxy} \right)\), khoảng cách từ \(A\) đến \(Ox\) và \(Oy\) lần lượt là \(5\) và \(8\).

Đề bài

Trong không gian \(Oxyz\), xác định tọa độ của điểm \(A\) trong mỗi trường hợp sau:

a) \(A\) nằm trên tia \(Oy\) và \(OA = 3\);

b) \(A\) nằm trên tia đối của tia \(Oz\) và \(OA = 5\);

c) \(A\) nằm trong góc phần tư thứ nhất của mặt phẳng \(\left( {Oxy} \right)\), khoảng cách từ \(A\) đến \(Ox\) và \(Oy\) lần lượt là \(5\) và \(8\).

Phương pháp giải - Xem chi tiết

Ý a: Điểm thuộc \(Oy\) sẽ có hoành độ và cao độ bằng 0, khoảng cách \(OA\) chính là trị tuyệt đối của tung độ điểm A, do đó ta cần chú ý về dấu của tung độ để xác định được tọa độ cần tìm.

Ý b: Điểm thuộc \(Oz\) sẽ có hoành độ và tung độ bằng 0, khoảng cách \(OA\) chính là trị tuyệt đối của cao độ điểm A, do đó ta cần chú ý về dấu của cao độ để xác định được tọa độ cần tìm.

Ý c: Điểm thuộc \(\left( {Oxy} \right)\) sẽ có cao độ 0, khoảng cách đến \(Ox\) chính là trị tuyệt đối của tung độ điểm A, khoảng cách đến \(Oy\) chính là trị tuyệt đối của hoành độ điểm A do đó ta cần chú ý về dấu của tung độ và hoành độ để xác định được tọa độ cần tìm.

Lời giải chi tiết

a) Do \(A\) thuộc tia \(Oy\) nên \(A\left( {0;a;0} \right)\) với \(a \ge 0\). Ta có \(OA = 3 \Leftrightarrow a = 3\). Vậy \(A\left( {0;3;0} \right)\).

b) Do \(A\) nằm trên tia đối của tia \(Oz\) nên \(A\left( {0;0;a} \right)\) với \(a \le 0\). Ta có \(OA = 5 \Leftrightarrow a =  - 5\).

Vậy \(A\left( {0;0; - 5} \right)\).

c) Ta có \(A\) nằm trong góc phần tư thứ nhất của mặt phẳng \(\left( {Oxy} \right)\) do đó \(A\left( {x;y;0} \right)\) với \(x;y \ge 0\). Mặt khác \(d\left( {A,Ox} \right) = 5 \Leftrightarrow y = 5\); \(d\left( {A,Oy} \right) = 8 \Leftrightarrow x = 8\).

Vậy \(A\left( {8;5;0} \right)\).


Cùng chủ đề:

Giải bài 2. 12 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 13 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 14 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 15 trang 46 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 16 trang 48 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 17 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 18 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 19 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 20 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 21 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 22 trang 49 sách bài tập toán 12 - Kết nối tri thức