Giải bài 2 trang 48 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài tập ôn tập cuối năm - SBT Toán 12 Kết nối tri thức


Giải bài 2 trang 48 sách bài tập toán 12 - Kết nối tri thức

Cho hàm số (y = {x^3} + 3{x^2} + 1) có đồ thị (C). Xét đường thẳng đi qua điểm (Aleft( { - 3;1} right)) và có hệ số góc k. Điều kiện của k để đường thẳng đó cắt đồ thị (C) tại ba điểm phân biệt. A. (0 < k < 1). B. (k > 0). C. (1 < k < 9). D. (0 < k ne 9).

Đề bài

Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị (C). Xét đường thẳng đi qua điểm \(A\left( { - 3;1} \right)\) và có hệ số góc k. Điều kiện của k để đường thẳng đó cắt đồ thị (C) tại ba điểm phân biệt.

A. \(0 < k < 1\).

B. \(k > 0\).

C. \(1 < k < 9\).

D. \(0 < k \ne 9\).

Phương pháp giải - Xem chi tiết

Viết phương trình đường thẳng theo hệ số góc. Xét phương trình hoành độ giao điểm.

Tìm k để phương trình có 3 nghiệm phân biệt.

Lời giải chi tiết

Đường thẳng đi qua điểm \(A\left( { - 3;1} \right)\) và có hệ số góc k có phương trình \(d:y = k\left( {x + 3} \right) + 1\).

Xét phương trình hoành độ giao điểm của (C) và đường thẳng d:

\({x^3} + 3{x^2} + 1 = k\left( {x + 3} \right) + 1 \Leftrightarrow \left( {x + 3} \right)\left( {{x^2} - k} \right) = 0 \Leftrightarrow x =  - 3\) hoặc \({x^2} = k\).

Số giao điểm của (C) và d bằng số nghiệm của phương trình trên do đó để đường thẳng cắt đồ thị (C) tại ba điểm phân biệt thì phương trình trên có 3 nghiệm phân biệt, điều này xảy ra khi phương trình \({x^2} = k\) có hai nghiệm phân biệt khác -3 do đó \(0 < k \ne 0\).

Đáp án D.


Cùng chủ đề:

Giải bài 1. 64 trang 36 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 65 trang 36 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 66 trang 36 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 67 trang 36 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 68 trang 37 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2 trang 48 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 1 trang 43 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 2 trang 44 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 3 trang 44 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 4 trang 44 sách bài tập toán 12 - Kết nối tri thức
Giải bài 2. 5 trang 44 sách bài tập toán 12 - Kết nối tri thức