Giải bài 24 trang 41 sách bài tập toán 8 - Cánh diều — Không quảng cáo

SBT Toán 8 - Giải SBT Toán 8 - Cánh diều Bài tập cuối chương II - SBT Toán 8 CD


Giải bài 24 trang 41 sách bài tập toán 8 - Cánh diều

Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

Đề bài

Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

a)     Viết điều kiện xác định của biểu thức \(D\)

b)    Tính giá trị của biểu thức \(D\) tại \(x = 5947\)

c)     Tìm giá trị của \(x\) để \(D\) nhận giá trị nguyên.

Phương pháp giải - Xem chi tiết

Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.

Lời giải chi tiết

a)     Điều kiện xác định của biểu thức \(D\) là: \(x \ne 0;x \ne  - 1;x \ne \frac{1}{2}\)

b)    Rút gọn biểu thức \(D\) ta có:

\(\begin{array}{l}D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \left( {\frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2.3x - 3.3x.\left( {x + 1} \right)}}{{3x\left( {x + 1} \right)}}} \right).\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \left( {\frac{{{x^2} + 3x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {2 - 4x} \right)}}} \right) - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{ - 8{x^2} + 2}}{{3x\left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{ - 2\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{6x\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{2x + 1}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{{x^2} - x}}{{3x}} = \frac{{x - 1}}{3}\end{array}\)

Giá trị của biểu thức \(D\) tại \(x = 5947\) là: \(\frac{{5947 - 1}}{3} = 1982\)

c)     Để \(D\) nhận giá trị nguyên thì \(\frac{{x - 1}}{3}\) phải nhận giá trị nguyên. Suy ra \(x - 1 \vdots 3\), tức là \(x - 1 = 3k\) hay \(x = 3k + 1\) với \(k \in \mathbb{Z}\) (thỏa mãn điều kiện xác định).


Cùng chủ đề:

Giải bài 23 trang 67 sách bài tập toán 8 – Cánh diều
Giải bài 23 trang 79 sách bài tập toán 8 - Cánh diều
Giải bài 23 trang 97 sách bài tập toán 8 - Cánh diều
Giải bài 24 trang 18 sách bài tập toán 8 - Cánh diều
Giải bài 24 trang 29 sách bài tập toán 8 – Cánh diều
Giải bài 24 trang 41 sách bài tập toán 8 - Cánh diều
Giải bài 24 trang 49 sách bài tập toán 8 – Cánh diều
Giải bài 24 trang 62 sách bài tập toán 8 - Cánh diều
Giải bài 24 trang 67 sách bài tập toán 8 – Cánh diều
Giải bài 24 trang 79 sách bài tập toán 8 - Cánh diều
Giải bài 24 trang 97 sách bài tập toán 8 - Cánh diều