Giải bài 30 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. 0. B. ‒2. C. 1. D. ‒5.
Đề bài
Giá trị nhỏ nhất của hàm số y=2x+11−x trên đoạn [2;3] bằng:
A. 0.
B. ‒2.
C. 1.
D. ‒5.
Phương pháp giải - Xem chi tiết
Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b]:
Bước 1. Tìm các điểm x1,x2,...,xn thuộc khoảng (a;b) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 2. Tính f(x1),f(x2),...,f(xn),f(a) và f(b).
Bước 3. So sánh các giá trị tìm được ở Bước 2.
Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số f(x) trên đoạn [a;b], số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b].
Lời giải chi tiết
Ta có: y′=3(1−x)2>0,∀x∈[2;3]
y(2)=−5;y(3)=−72.
Vậy min tại {\rm{x}} = 2
Chọn D.