Giải bài 4.34 trang 19 sách bài tập toán 12 - Kết nối tri thức
Cho hàm số (fleft( x right)) liên tục trên (mathbb{R}) và (intlimits_0^4 {fleft( x right)dx} = 4). Giá trị của tích phân (intlimits_0^4 {2fleft( x right)dx} ) là A. 2. B. 4. C. 8. D. 16.
Đề bài
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)dx} = 4\). Giá trị của tích phân \(\int\limits_0^4 {2f\left( x \right)dx} \) là
A. 2.
B. 4.
C. 8.
D. 16.
Phương pháp giải - Xem chi tiết
Áp dụng tính chất của tích phân \(\int\limits_0^4 {2f\left( x \right)dx} = 2\int\limits_0^4 {f\left( x \right)dx} \).
Lời giải chi tiết
Ta có \(\int\limits_0^4 {2f\left( x \right)dx} = 2\int\limits_0^4 {f\left( x \right)dx} = 2 \cdot 4 = 8\).
Vậy ta chọn đáp án C.
Cùng chủ đề:
Giải bài 4. 34 trang 19 sách bài tập toán 12 - Kết nối tri thức