Giải bài 4.40 trang 20 sách bài tập toán 12 - Kết nối tri thức
Khi nghiên cứu một quần thể vi khuẩn, người ta nhận thấy quần thể vi khuẩn đó ở ngày thứ t có số lượng (Nleft( t right)) con. Biết rằng tốc độ phát triển của quần thể đó là (N'left( t right) = frac{{8000}}{t}) và sau ngày thứ nhất (left( {t = 1} right)) có 250 000 con. Sau 6 ngày (left( {t = 6} right)), số lượng của quần thể vi khuẩn là A. 353 584 con. B. 234 167 con. C. 288 959 con. D. 264 334 con.
Đề bài
Khi nghiên cứu một quần thể vi khuẩn, người ta nhận thấy quần thể vi khuẩn đó ở ngày thứ t có số lượng \(N\left( t \right)\) con. Biết rằng tốc độ phát triển của quần thể đó là \(N'\left( t \right) = \frac{{8000}}{t}\) và sau ngày thứ nhất \(\left( {t = 1} \right)\) có 250 000 con. Sau 6 ngày \(\left( {t = 6} \right)\), số lượng của quần thể vi khuẩn là
A. 353 584 con.
B. 234 167 con.
C. 288 959 con.
D. 264 334 con.
Phương pháp giải - Xem chi tiết
Từ giả thiết \(N'\left( t \right) = \frac{{8000}}{t}\) và “sau ngày thứ nhất \(\left( {t = 1} \right)\) có 250 000 con” ta tìm được hàm \(N\left( t \right)\). Tính \(N\left( 6 \right)\) ta có kết quả cần tìm.
Lời giải chi tiết
Ta có \(N'\left( t \right) = \frac{{8000}}{t}\) suy ra \(N\left( t \right) = \int {\frac{{8000}}{t}dt} = 8000\ln \left| t \right| + C = 8000\ln t + C\) (do \(t > 0\)).
Mặt khác sau ngày thứ nhất \(\left( {t = 1} \right)\) quần thể có 250 000 con do đó \(N\left( 1 \right) = 250000\).
Suy ra \(8000\ln 1 + C = 250000 \Leftrightarrow C = 250000\). Do đó \(N\left( t \right) = 8000\ln t + 250000\).
Số lượng của quần thể vi khuẩn sau 6 ngày là \(N\left( 6 \right) = 8000\ln 6 + 250000 = 264334,0758\) (con).
Vậy ta chọn đáp án D.