Giải bài 4.45 trang 21 sách bài tập toán 12 - Kết nối tri thức
Cho hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = \sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng \(x = 0,x = 1\). Tính thể tích khối tròn xoay khi quay \(D\) quanh trục hoành.
Đề bài
Cho hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = \sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng \(x = 0,x = 1\). Tính thể tích khối tròn xoay khi quay \(D\) quanh trục hoành.
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính thể tích \(V = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } \right)}^2}dx} \).
Lời giải chi tiết
Thể tích khối tròn xoay khi quay \(D\) quanh trục hoành là
\(V = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } \right)}^2}dx} = \pi \int\limits_0^1 {\left( {{x^2} + 1} \right)dx} = \pi \left. {\left( {\frac{{{x^3}}}{3} + x} \right)} \right|_0^1 = \frac{{4\pi }}{3}\).
Cùng chủ đề:
Giải bài 4. 45 trang 21 sách bài tập toán 12 - Kết nối tri thức