Giải bài 4. 8 trang 8 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài 11. Nguyên hàm - SBT Toán 12 Kết nối tri thức


Giải bài 4.8 trang 8 sách bài tập toán 12 - Kết nối tri thức

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t=0 là thời điểm viên đạn được bắn lên) cho bởi (vleft( t right) = 150 - 9,8t) (m/s). Tìm độ cao của viên đạn (tính từ mặt đất): a) Sau (t = 3) giây; b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Đề bài

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t=0 là thời điểm viên đạn được bắn lên) cho bởi \(v\left( t \right) = 150 - 9,8t\) (m/s).

Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau \(t = 3\) giây;

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Phương pháp giải - Xem chi tiết

Ý a: Độ cao \(h\left( t \right)\) của viên đạn tại thời điểm \(t\) là một nguyên hàm của hàm vận tốc \(v\left( t \right)\).

Tìm \(h\left( t \right)\) sau đó tính \(h\left( 3 \right)\).

Ý b: Tìm giá trị lớn nhất của \(h\left( t \right)\) với \(t \ge 0\). Lập bảng biến thiên để tìm.

Lời giải chi tiết

a) Độ cao \(h\left( t \right)\) của viên đạn tại thời điểm \(t\) là một nguyên hàm của hàm vận tốc \(v\left( t \right)\).

Ta có \(h\left( t \right) = \int {\left( {150 - 9,8t} \right)} dt = 150t - 4,9{t^2} + C\).

Do \(t = 0\) là thời điểm viên đạn được bắn lên nên \(h\left( 0 \right) = 0\).

Suy ra \(150 \cdot 0 - 4,9 \cdot {0^2} + C = 0 \Leftrightarrow C = 0 \Leftrightarrow \)\(h\left( t \right) = 150t - 4,9{t^2}\).

Độ cao của viên đạn sau 3 giây là \(h\left( 3 \right) = 150 \cdot 3 - 4,9 \cdot {3^2} = 405,9\) (m).

b) Độ cao lớn nhất của viên đạn là giá trị lớn nhất của hàm số \(h\left( t \right) = 150t - 4,9{t^2}\) với \(t \ge 0\).

Ta có \(h'\left( t \right) = 150 - 9,8t\) suy ra \(h'\left( t \right) = 0 \Leftrightarrow 150 - 9,8t = 0 \Leftrightarrow t = \frac{{750}}{{49}}\).

Ta lập bảng biến thiên

Từ bảng biến thiên suy ra \(\mathop {\max }\limits_{\left[ {0; + \infty } \right)} h\left( t \right) = h\left( {\frac{{750}}{{49}}} \right) = \frac{{56250}}{{49}} \approx 1147,96\).

Vậy viên đạt đạt độ cao lớn nhất khoảng \(1147,96\) m  tại thời điểm \(t = \frac{{750}}{{49}}\) giây.


Cùng chủ đề:

Giải bài 4. 3 trang 7 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 4 trang 7 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 5 trang 8 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 6 trang 8 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 7 trang 8 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 8 trang 8 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 9 trang 8 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 10 trang 8 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 11 trang 12 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 12 trang 12 sách bài tập toán 12 - Kết nối tri thức
Giải bài 4. 13 trang 12 sách bài tập toán 12 - Kết nối tri thức