Processing math: 33%

Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số


Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạo

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = frac{{4{{rm{x}}^2} - 2{rm{x}} + 9}}{{2{rm{x}} - 1}}) trên khoảng (left( {1; + infty } right)); b) (y = frac{{{x^2} - 2}}{{2{rm{x}} + 1}}) trên nửa khoảng (left[ {0; + infty } right)); c) (y = frac{{9{{rm{x}}^2} + 3{rm{x}} + 7}}{{3{rm{x}} - 1}}) trên nửa khoảng (left( {frac{1}{3};5} right]); d) (y = frac{{2{{rm{x}}^2} + 3{rm{x}} - 3}}{{2{rm{x}} + 5}}) trên đoạn (left[ { - 2;4} right]

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) y=4x22x+92x1 trên khoảng (1;+);

b) y=x222x+1 trên nửa khoảng [0;+);

c) y=9x2+3x+73x1 trên nửa khoảng (13;5];

d) y=2x2+3x32x+5 trên đoạn [2;4].

Phương pháp giải - Xem chi tiết

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b]:

Bước 1. Tìm các điểm x1,x2,...,xn thuộc khoảng (a;b) mà tại đó f(x) bằng 0 hoặc không tồn tại.

Bước 2. Tính f(a);f(x1);f(x2);...;f(xn);f(b).

Bước 3. Gọi M là số lớn nhất và m là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: M=max.

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:

‒ Lập bảng biến thiên của hàm số trên tập hợp đó.

‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.

Lời giải chi tiết

a) Xét hàm số y = f\left( x \right) = \frac{{4{{\rm{x}}^2} - 2{\rm{x}} + 9}}{{2{\rm{x}} - 1}} trên khoảng \left( {1; + \infty } \right).

Ta có:

\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right)}^\prime }\left( {2{\rm{x}} - 1} \right) - \left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right){{\left( {2{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}}\\ = \frac{{\left( {8{\rm{x}} - 2} \right)\left( {2{\rm{x}} - 1} \right) - \left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right).2}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}} = \frac{{8{{\rm{x}}^2} - 8{\rm{x}} - 16}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}}\end{array}

f'\left( x \right) = 0 \Leftrightarrow x = 2 hoặc x =  - 1 (loại).

Bảng biến thiên của hàm số trên khoảng \left( {1; + \infty } \right):

Từ bảng biến thiên, ta thấy \mathop {\min }\limits_{\left( {1; + \infty } \right)} f\left( x \right) = f\left( 2 \right) = 7, hàm số không có giá trị lớn nhất trên \left( {1; + \infty } \right).

b) Xét hàm số y = f\left( x \right) = \frac{{{x^2} - 2}}{{2{\rm{x}} + 1}} trên nửa khoảng \left[ {0; + \infty } \right).

Ta có:

\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {{x^2} - 2} \right)}^\prime }\left( {2{\rm{x}} + 1} \right) - \left( {{x^2} - 2} \right){{\left( {2{\rm{x}} + 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} = \frac{{2{\rm{x}}\left( {2{\rm{x}} + 1} \right) - \left( {{x^2} - 2} \right).2}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\\ = \frac{{2{{\rm{x}}^2} + 2{\rm{x}} + 4}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} = \frac{{2{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{7}{2}}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} > 0,\forall x \in \left[ {0; + \infty } \right)\\\end{array}

f'\left( x \right) = 0 \Leftrightarrow x = 2 hoặc x =  - 1 (loại).

Bảng biến thiên của hàm số trên khoảng \left[ {0; + \infty } \right):

Từ bảng biến thiên, ta thấy \mathop {\min }\limits_{\left[ {0; + \infty } \right)} f\left( x \right) = f\left( 0 \right) =  - 2, hàm số không có giá trị lớn nhất trên \left[ {0; + \infty } \right).

c) Xét hàm số y = f\left( x \right) = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 7}}{{3{\rm{x}} - 1}} trên nửa khoảng \left( {\frac{1}{3};5} \right].

Ta có:

\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 7} \right)}^\prime }\left( {3{\rm{x}} - 1} \right) - \left( {9{{\rm{x}}^2} + 3{\rm{x}} + 7} \right){{\left( {3{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {3{\rm{x}} - 1} \right)}^2}}}\\ = \frac{{\left( {18{\rm{x}} + 3} \right)\left( {3{\rm{x}} - 1} \right) - \left( {9{{\rm{x}}^2} + 3{\rm{x}} + 7} \right).3}}{{{{\left( {3{\rm{x}} - 1} \right)}^2}}} = \frac{{27{{\rm{x}}^2} - 18{\rm{x}} - 24}}{{{{\left( {3{\rm{x}} - 1} \right)}^2}}}\\\end{array}

f'\left( x \right) = 0 \Leftrightarrow x = \frac{4}{3} hoặc x =  - \frac{2}{3} (loại).

Bảng biến thiên của hàm số trên nửa khoảng \left( {\frac{1}{3};5} \right]:

Từ bảng biến thiên, ta thấy \mathop {\min }\limits_{\left( {\frac{1}{3};5} \right]} f\left( x \right) = f\left( {\frac{4}{3}} \right) = 9, hàm số không có giá trị lớn nhất trên nửa khoảng \left( {\frac{1}{3};5} \right].

d) Xét hàm số y = f\left( x \right) = \frac{{2{{\rm{x}}^2} + 3{\rm{x}} - 3}}{{2{\rm{x}} + 5}} trên đoạn \left[ { - 2;4} \right].

Ta có:

\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {2{{\rm{x}}^2} + 3{\rm{x}} - 3} \right)}^\prime }\left( {2{\rm{x}} + 5} \right) - \left( {2{{\rm{x}}^2} + 3{\rm{x}} - 3} \right){{\left( {2{\rm{x}} + 5} \right)}^\prime }}}{{{{\left( {2{\rm{x}} + 5} \right)}^2}}}\\ = \frac{{\left( {4{\rm{x}} + 3} \right)\left( {2{\rm{x}} + 5} \right) - \left( {2{{\rm{x}}^2} + 3{\rm{x}} - 3} \right).2}}{{{{\left( {2{\rm{x}} + 5} \right)}^2}}} = \frac{{4{{\rm{x}}^2} + 20{\rm{x}} + 21}}{{{{\left( {2{\rm{x}} + 5} \right)}^2}}}\\\end{array}

f'\left( x \right) = 0 \Leftrightarrow x =  - \frac{3}{2} hoặc x =  - \frac{7}{2} (loại).

f\left( { - 2} \right) = \frac{{11}}{9};f\left( { - \frac{3}{2}} \right) =  - \frac{3}{2};f\left( 4 \right) = \frac{{41}}{{13}}

Vậy \mathop {\max }\limits_{\left[ { - 2;4} \right]} f\left( x \right) = f\left( 4 \right) = \frac{{41}}{{13}},\mathop {\min }\limits_{\left[ { - 2;4} \right]} f\left( x \right) = f\left( { - \frac{3}{2}} \right) =  - \frac{3}{2}.


Cùng chủ đề:

Giải bài 3 trang 107 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 9 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 14 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 23 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 31 sách bài tập toán 12 - Chân trời sáng tạo