Giải bài 4 trang 21 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 3. Ứng dụng hình học của tích phân - SBT Toán 12 Ch


Giải bài 4 trang 21 sách bài tập toán 12 - Chân trời sáng tạo

Cho hàm số (y = {x^2} - 2x) có đồ thị (left( C right)). Kí hiệu (A) là hình phẳng giới hạn bởi (left( C right)), trục hoành và hai đường thẳng (x = 0,x = 2); (B) là hình phẳng giới hạn bởi (left( C right)), trục hoành và hai đường thẳng (x = 2,x = aleft( {a > 2} right)). Tìm giá trị của (a) để (A) và (B) có diện tích bằng nhau.

Đề bài

Cho hàm số \(y = {x^2} - 2x\) có đồ thị \(\left( C \right)\). Kí hiệu \(A\) là hình phẳng giới hạn bởi \(\left( C \right)\), trục hoành và hai đường thẳng \(x = 0,x = 2\); \(B\) là hình phẳng giới hạn bởi \(\left( C \right)\), trục hoành và hai đường thẳng \(x = 2,x = a\left( {a > 2} \right)\). Tìm giá trị của \(a\) để \(A\) và \(B\) có diện tích bằng nhau.

Phương pháp giải - Xem chi tiết

Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}{S_A} = \int\limits_0^2 {\left| {{x^2} - 2{\rm{x}}} \right|dx}  = \int\limits_0^2 {\left( { - {x^2} + 2{\rm{x}}} \right)dx}  = \left. {\left( { - \frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^2 = \frac{4}{3}\\{S_B} = \int\limits_2^a {\left| {{x^2} - 2{\rm{x}}} \right|dx}  = \int\limits_2^a {\left( {{x^2} - 2{\rm{x}}} \right)dx}  = \left. {\left( {\frac{{{x^3}}}{3} - {x^2}} \right)} \right|_2^a = \frac{{{a^3}}}{3} - {a^2} + \frac{4}{3}\end{array}\)

Vì \(A\) và \(B\) có diện tích bằng nhau nên ta có:

\(\frac{4}{3} = \frac{{{a^3}}}{3} - {a^2} + \frac{4}{3} \Leftrightarrow \frac{{{a^3}}}{3} - {a^2} = 0 \Leftrightarrow a = 0\) (loại) hoặc \({\rm{a}} = 3\).

Vậy với \({\rm{a}} = 3\) thì \(A\) và \(B\) có diện tích bằng nhau.


Cùng chủ đề:

Giải bài 3 trang 109 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 9 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 14 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 23 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 33 sách bài tập toán 12 - Chân trời sáng tạo