Giải bài 4 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài tập cuối chương 1 - SBT Toán 11 CTST


Giải bài 4 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải các phương trình lượng giác sau: a) \(\cos \left( {2x - \frac{\pi }{3}} \right) + \sin x \) \( = 0\); b) \({\cos ^2}\left( {x + \frac{\pi }{4}} \right) \) \( = \frac{{2 + \sqrt 3 }}{4}\); c) \(\cos \left( {3x + \frac{\pi }{6}} \right) + 2{\sin ^2}x \) \( = 1\)

Đề bài

Giải các phương trình lượng giác sau:

a) \(\cos \left( {2x - \frac{\pi }{3}} \right) + \sin x \) \( = 0\);

b) \({\cos ^2}\left( {x + \frac{\pi }{4}} \right) \) \( = \frac{{2 + \sqrt 3 }}{4}\);

c) \(\cos \left( {3x + \frac{\pi }{6}} \right) + 2{\sin ^2}x \) \( = 1\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải phương trình: Phương trình \(\cos x \) \( = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x \) \( = \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x \) \( =  - \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha  \) \( = m\).

Đặc biệt: \(\cos u \) \( = \cos v \) \( \Leftrightarrow u \) \( = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u \) \( =  - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) \(\cos \left( {2x - \frac{\pi }{3}} \right) + \sin x \) \( = 0 \) \( \Leftrightarrow \cos \left( {2x - \frac{\pi }{3}} \right) \) \( = \sin \left( { - x} \right) \) \( \Leftrightarrow \cos \left( {2x - \frac{\pi }{3}} \right) \) \( = \cos \left( {\frac{\pi }{2} + x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = \frac{\pi }{2} + x + k2\pi \\2x - \frac{\pi }{3} =  - \left( {\frac{\pi }{2} + x} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = \frac{{ - \pi }}{{18}} + \frac{{k2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b) \({\cos ^2}\left( {x + \frac{\pi }{4}} \right) \) \( = \frac{{2 + \sqrt 3 }}{4} \) \( \Leftrightarrow \frac{{1 + \cos 2\left( {x + \frac{\pi }{4}} \right)}}{2} \) \( = \frac{{2 + \sqrt 3 }}{4} \) \( \Leftrightarrow \cos \left( {2x + \frac{\pi }{2}} \right) \) \( = \cos \frac{\pi }{6}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x + \frac{\pi }{2} = \frac{\pi }{6} + k2\pi }\\{2x + \frac{\pi }{2} =  - \frac{\pi }{6} + k2\pi }\end{array}} \right.(k \in \mathbb{Z}{\rm{)}} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{ - \pi }}{6} + k\pi }\\{x = \frac{{ - \pi }}{3} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\)

c) \(\cos \left( {3x + \frac{\pi }{6}} \right) + 2{\sin ^2}x \) \( = 1 \) \( \Leftrightarrow \cos \left( {2x + \frac{\pi }{6}} \right) \) \( = 1 - 2{\sin ^2}x \) \( \Leftrightarrow \cos \left( {3x + \frac{\pi }{6}} \right) \) \( = \cos 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{6} = 2x + k2\pi \\3x + \frac{\pi }{6} =  - 2x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{ - \pi }}{{30}} + \frac{{k2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)


Cùng chủ đề:

Giải bài 4 trang 19 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2