Giải bài 4 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 2. Đường thẳng vuông góc với mặt phẳng - SBT Toán 1


Giải bài 4 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC,SB = SD\).

Đề bài

Cho hình chóp S.ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC,SB = SD\).

a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\).

b) Gọi I, J lần lượt là trung điểm của BA, BC. Chứng minh rằng \(IJ \bot \left( {SBD} \right)\).

c) Chứng minh rằng \(BD \bot \left( {SAC} \right)\).

Phương pháp giải - Xem chi tiết

a, c) Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha  \right)\) thì \(d \bot \left( \alpha  \right)\).

b) Sử dụng kiến thức về liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng: Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

Lời giải chi tiết

a) Vì ABCD là hình thoi tâm O nên O là trung điểm của AC, O là trung điểm của BD.

Vì \(SA = SC\) nên tam giác SAC cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SAC. Do đó, \(SO \bot AC\)

Vì \(SB = SD\) nên tam giác SBD cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SBD. Do đó, \(SO \bot BD\)

Vì \(SO \bot AC\), \(SO \bot BD\), AC và BD cắt nhau và nằm trong (ABCD).

Do đó, \(SO \bot \left( {ABCD} \right)\)

b) Vì \(SO \bot AC,BD \bot AC\) (do ABCD là hình thoi tâm), SO và BD cắt nhau tại O và nằm trong (SBD) nên \(AC \bot \left( {SBD} \right)\) (1)

Vì I, J lần lượt là trung điểm của BA, BC nên IJ là đường trung bình của tam giác BAC. Do đó, IJ//AC (2)

Từ (1) và (2) suy ra: \(IJ \bot \left( {SBD} \right)\).

c) Vì \(SO \bot BD,BD \bot AC\), SO và AC cắt nhau tại O và nằm trong (SAC) nên \(BD \bot \left( {SAC} \right)\).


Cùng chủ đề:

Giải bài 4 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1