Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Tính đạo hàm của các hàm số sau:
Đề bài
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{x}{{\sin x - \cos x}}\);
b) \(y = \frac{{\sin x}}{x}\);
c) \(y = \sin x - \frac{1}{3}{\sin ^3}x;\)
d) \(y = \cos \left( {2\sin x} \right)\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).
+ Sử dụng kiến thức về đạo hàm của hàm số để tính:
a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(\left( {\cos x} \right)' = - \sin x\), \(x' = 1\)
b) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(x' = 1\)
c) \(\left( {u - v} \right)' = u' - v'\), \({\left[ {u\left( x \right)} \right]^\alpha } = \alpha {\left[ {u\left( x \right)} \right]^\alpha }\left[ {u\left( x \right)} \right]'\)
d) \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\), \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)
Lời giải chi tiết
a) \(y' \) \( = {\left( {\frac{x}{{\sin x - \cos x}}} \right)'} \) \( = \frac{{x'\left( {\sin x - \cos x} \right) - x\left( {\sin x - \cos x} \right)'}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)
\( \) \( = \frac{{\sin x - \cos x - x\left( {\cos x + \sin x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)
b) \(y' \) \( = {\left( {\frac{{\sin x}}{x}} \right)'} \) \( = \frac{{\left( {\sin x} \right)'x - x'\sin x}}{{{x^2}}} \) \( = \frac{{x\cos x - \sin x}}{{{x^2}}}\);
c) \(y' \) \( = {\left( {\sin x - \frac{1}{3}{{\sin }^3}x} \right)'} \) \( = \cos x - \frac{1}{3}.3{\sin ^2}x\left( {\sin x} \right)' \) \( = \cos x - {\sin ^2}x\cos x\)
\( \) \( = \cos x\left( {1 - {{\sin }^2}x} \right) \) \( = {\cos ^3}x\);
d) \(y' \) \( = \left[ {\cos \left( {2\sin x} \right)} \right]' \) \( = - \left( {2\sin x} \right)'.\sin \left( {2\sin x} \right) \) \( = - 2\cos x.\sin \left( {2\sin x} \right)\).