Giải bài 48 trang 27 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hình phẳng được tô màu như Hình 12. Diện tích hình phẳng được kí hiệu là (S). a) Hình phẳng đó được giới hạn bởi đồ thị (y = fleft( x right)), trục hoành và hai đường thẳng (x = - 1,x = 5). b) (S = intlimits_{ - 1}^5 {left| {fleft( x right)} right|dx} ). c) (S = intlimits_{ - 1}^1 {fleft( x right)dx} + intlimits_1^5 {fleft( x right)dx} ). d) (S = intlimits_{ - 1}^1 {fleft( x right)dx} -
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hình phẳng được tô màu như Hình 12 . Diện tích hình phẳng được kí hiệu là \(S\).
a) Hình phẳng đó được giới hạn bởi đồ thị \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = - 1,x = 5\).
b) \(S = \int\limits_{ - 1}^5 {\left| {f\left( x \right)} \right|dx} \).
c) \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^5 {f\left( x \right)dx} \).
d) \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^5 {f\left( x \right)dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
Hình phẳng đã cho được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = - 1,x = 5\). Vậy a) đúng.
Diện tích hình phẳng được tính theo công thức:
\(S = \int\limits_{ - 1}^5 {\left| {f\left( x \right)} \right|dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^5 {f\left( x \right)dx} \) (vì \(f\left( x \right) > 0,\forall x \in \left[ { - 1;1} \right]\) và \(f\left( x \right) < 0,\forall x \in \left[ {1;5} \right]\)).
Vậy b) đúng, c) sai, d) đúng.
a) Đ.
b) Đ.
c) S.
d) Đ.