Giải bài 49 trang 23 sách bài tập toán 12 - Cánh diều
Tiệm cận ngang của đồ thị hàm số (y = frac{{5{rm{x}} - 2}}{{x + 3}}) là đường thẳng: A. (x = - 3). B. (x = 5). C. (y = - 3). D. (y = 5).
Đề bài
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{5{\rm{x}} - 2}}{{x + 3}}\) là đường thẳng:
A. \(x = - 3\).
B. \(x = 5\).
C. \(y = - 3\).
D. \(y = 5\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 3} \right\}\).
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{5{\rm{x}} - 2}}{{x + 3}} = 5;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{5{\rm{x}} - 2}}{{x + 3}} = 5\)
Vậy \(y = 5\) là tiệm cận ngang của đồ thị hàm số đã cho.
Chọn D.