Giải bài 5. 34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Kết nối tri thức với cuộc sống Bài tập cuối chương V - SBT Toán 9 KNTT


Giải bài 5.34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1

Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài với nhau tại A, hai điểm (B in left( O right)) và (C in left( {O'} right)) sao cho B và C nằm cùng phía đối với đường thẳng OO’ và OB//O’C. a) Chứng minh góc BAC là góc vuông. b) Cho biết (R = 3cm), (R' = 1cm) và BC cắt OO’ tại D. Tính độ dài đoạn OD.

Đề bài

Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài với nhau tại A, hai điểm \(B \in \left( O \right)\) và \(C \in \left( {O'} \right)\) sao cho B và C nằm cùng phía đối với đường thẳng OO’ và OB//O’C.

a) Chứng minh góc BAC là góc vuông.

b) Cho biết \(R = 3cm\), \(R' = 1cm\) và BC cắt OO’ tại D. Tính độ dài đoạn OD.

Phương pháp giải - Xem chi tiết

a) + Chứng minh tam giác AOB cân tại O nên \(\widehat {{A_1}} = \widehat {{B_1}}\).

+ Tam giác AOB có:

\(\widehat {{A_1}} + \widehat {{O_1}} + \widehat {{B_1}} = 2\widehat {{A_1}} + \widehat {{O_1}} = {180^o}\) nên \(2\widehat {{A_1}} = {180^o} - \widehat {{O_1}}\).

+ Chứng minh tam giác AO’C cân tại O’. Do đó, \(\widehat {{A_2}} = \widehat {O'CA}\).

+ Tam giác AO’C có:

\(\widehat {{A_2}} + \widehat {O{'_1}} + \widehat {O'CA} = 2\widehat {{A_2}} + \widehat {O{'_1}} = {180^o}\) nên \(2\widehat {{A_2}} = {180^o} - \widehat {O{'_1}}\).

+ Do đó:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - \left( {\widehat {{O_1}} + \widehat {O{'_1}}} \right)\) (1)

Chứng minh

\(\widehat {{O_2}} = \widehat {O{'_1}}\), \(\widehat {{O_2}} + \widehat {{O_1}} = {180^o}\) nên \(\widehat {{O_1}} + \widehat {O{'_1}} = {180^o}\) (2)

Từ (1) và (2) ta có:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - {180^o} = {180^o}\) nên \(\widehat {BAC} = {90^o}\).

b) + Ta có: \(OA = OB = R = 3cm,O'A = O'C = R' = 1cm\).

+ Chứng minh \(\frac{{DO}}{{DO'}} = \frac{{OB}}{{O'C}} = \frac{3}{1}\)

+ \(DO' = DO - OO' = DO - \left( {OA + O'A} \right)\) \( = DO - \left( {3 + 1} \right) = DO - 4\) (4)

+ Do đó, \(\frac{{DO}}{{DO - 4}} = \frac{3}{1}\), từ đó tính được DO.

Lời giải chi tiết

a) Vì \(OA = OB\) (bán kính của (O)) nên tam giác AOB cân tại O. Do đó, \(\widehat {{A_1}} = \widehat {{B_1}}\).

Tam giác AOB có:

\(\widehat {{A_1}} + \widehat {{O_1}} + \widehat {{B_1}} = 2\widehat {{A_1}} + \widehat {{O_1}} = {180^o}\) nên \(2\widehat {{A_1}} = {180^o} - \widehat {{O_1}}\).

Vì \(O'A = O'C\) (bán kính của (O’)) nên tam giác AO’C cân tại O’. Do đó, \(\widehat {{A_2}} = \widehat {O'CA}\).

Tam giác AO’C có:

\(\widehat {{A_2}} + \widehat {O{'_1}} + \widehat {O'CA} = 2\widehat {{A_2}} + \widehat {O{'_1}} = {180^o}\) nên \(2\widehat {{A_2}} = {180^o} - \widehat {O{'_1}}\).

Do đó:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - \left( {\widehat {{O_1}} + \widehat {O{'_1}}} \right)\) (1)

Vì OB//O’C nên \(\widehat {{O_2}} = \widehat {O{'_1}}\) (hai góc đồng vị).

Lại có: \(\widehat {{O_2}} + \widehat {{O_1}} = {180^o}\) nên \(\widehat {{O_1}} + \widehat {O{'_1}} = {180^o}\) (2).

Từ (1) và (2) ta có:

\(2\left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = {360^o} - {180^o} = {180^o}\) nên \(\widehat {{A_1}} + \widehat {{A_2}} = {90^o}\), suy ra \(\widehat {BAC} = {90^o}\).

b) Ta có: \(OA = OB = R = 3cm,O'A = O'C = R' = 1cm\).

Tam giác DOB có O’C//OB nên

\(\frac{{DO}}{{DO'}} = \frac{{OB}}{{O'C}} = \frac{3}{1}\) (3)

Lại có:

\(DO' = DO - OO' = DO - \left( {OA + O'A} \right) \\= DO - \left( {3 + 1} \right) = DO - 4 \;(4)\)

Từ (3) và (4) ta có:

\(\frac{{DO}}{{DO - 4}} = \frac{3}{1}\), suy ra \(DO = 3\left( {DO - 4} \right)\), hay \(2DO = 12\), suy ra \(DO = 6cm\).


Cùng chủ đề:

Giải bài 5. 29 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 32 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 33 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 35 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 6 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 1 trang 5, 6 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 2 trang 6 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 3 trang 6 sách bài tập toán 9 - Kết nối tri thức tập 2