Giải bài 5. 35 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Kết nối tri thức với cuộc sống Bài tập cuối chương V - SBT Toán 9 KNTT


Giải bài 5.35 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1

Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B. a) Chứng minh rằng MA và MB là hai tiếp tuyến của (N). b) Đường thẳng qua N và vuông góc với NA cắt MB tại C. Chứng minh hai điểm M và N đối xứng với nhau qua OC. c) Đường thẳng qua M và vuông góc với MA cắt NB tại D. Chứng minh ba điểm O, C và D thẳng hàng.

Đề bài

Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B.

a) Chứng minh rằng MA và MB là hai tiếp tuyến của (N).

b) Đường thẳng qua N và vuông góc với NA cắt MB tại C. Chứng minh hai điểm M và N đối xứng với nhau qua OC.

c) Đường thẳng qua M và vuông góc với MA cắt NB tại D. Chứng minh ba điểm O, C và D thẳng hàng.

Phương pháp giải - Xem chi tiết

a) + Chứng minh \(OA = OB = OM = ON\).

+ Chứng minh tam giác MAN vuông tại A nên \(MA \bot AN\) tại A, suy ra MA là tiếp tuyến của (N).

+ Chứng minh tam giác MBN vuông tại B nên \(MB \bot BN\) tại B, suy ra MB là tiếp tuyến của (N).

b) + Chứng minh \(\widehat {{M_1}} = \widehat {{N_1}}\), \(\widehat {{M_1}} = \widehat {{M_2}}\) nên \(\widehat {{M_2}} = \widehat {{N_1}}\). Suy ra, tam giác CMN cân tại C. Do đó, CO là đường trung trực của MN. Do đó, hai điểm M và N đối xứng với nhau qua OC

c) + Vì \(MA \bot MD\) và MD//AC (cùng vuông góc với MA) nên \(\widehat {DMN} = \widehat {ANM}\)

+ Chứng minh \(\widehat {DNM} = \widehat {ANM}\) suy ra \(\widehat {DMN} = \widehat {DNM}\) nên tam giác DMN cân tại D, suy ra D nằm trên đường trung trực CO của MN. Vậy ba điểm O, C và D thẳng hàng.

Lời giải chi tiết

a) Vì M, A, N, B thuộc (O) nên \(OA = OB = OM = ON\).

Tam giác MAN có \(OA = OM = ON = \frac{1}{2}MN\), tức là trung tuyến OA có độ dài bằng nửa độ dài cạnh MN nên tam giác MAN vuông tại A.

Do đó, \(MA \bot AN\) tại A.

Mà A thuộc (N) nên MA là tiếp tuyến của (N).

Tam giác MBN có \(OB = OM = ON = \frac{1}{2}MN\), tức là trung tuyến OB có độ dài bằng nửa độ dài cạnh MN nên tam giác MBN vuông tại B.

Do đó, \(MB \bot BN\) tại B.

Mà B thuộc (N) nên MB là tiếp tuyến của (N).

b) Vì AM//NC (cùng vuông góc với AN) nên \(\widehat {{M_1}} = \widehat {{N_1}}\).

Vì MA và MB là hai tiếp tuyến cắt nhau của (N) nên MN là phân giác của góc AMB.

Do đó, \(\widehat {{M_1}} = \widehat {{M_2}}\).

Do đó, \(\widehat {{M_2}} = \widehat {{N_1}}\).

Suy ra, tam giác CMN cân tại C.

Do đó, trung tuyến CO (vì \(OM = ON\)) đồng thời là đường trung trực của MN.

Do đó, hai điểm M và N đối xứng với nhau qua OC.

c) Vì \(MA \bot MD\) và MD//AC (cùng vuông góc với MA) nên \(\widehat {DMN} = \widehat {ANM}\).

Vì MA và MB là hai tiếp tuyến cắt nhau của (N) nên NM là phân giác của góc ANB.

Do đó, \(\widehat {DNM} = \widehat {ANM}\)

Do đó, \(\widehat {DMN} = \widehat {DNM}\) nên tam giác DMN cân tại D, suy ra D nằm trên đường trung trực CO của MN.

Vậy ba điểm O, C và D thẳng hàng.


Cùng chủ đề:

Giải bài 5. 30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 32 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 33 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 35 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 6 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 1 trang 5, 6 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 2 trang 6 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 3 trang 6 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 6. 4 trang 6 sách bài tập toán 9 - Kết nối tri thức tập 2