Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài tập cuối chương 4 - SBT Toán 12 Chân trời sáng tạo


Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo

Cho hàm số (y = fleft( x right)) có đồ thị như hình bên. Biết rằng đạo hàm (f'left( x right)) liên tục trên (mathbb{R}). Tính (intlimits_{ - 1}^1 {f'left( x right)dx} ).

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Biết rằng đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Tính \(\int\limits_{ - 1}^1 {f'\left( x \right)dx} \).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa tích phân.

Lời giải chi tiết

Dựa vào đồ thị hàm số ta có: \(f\left( { - 1} \right) =  - 1,f\left( 1 \right) = 2\).

\(\int\limits_{ - 1}^1 {f'\left( x \right)dx}  = f\left( 1 \right) = f\left( { - 1} \right) = 2 - \left( { - 1} \right) = 3\).


Cùng chủ đề:

Giải bài 5 trang 14 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 23 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 55 sách bài tập toán 12 - Chân trời sáng tạo