Giải bài 51 trang 46 sách bài tập toán 11 - Cánh diều
Các nhà khoa học xác định được chu kì bán rã của \({}_6^{14}C\) là 5730 năm
Đề bài
Các nhà khoa học xác định được chu kì bán rã của \({}_6^{14}C\) là 5730 năm, tức là sau 5730 năm thì số nguyên tử \({}_6^{14}C\) giảm đi một nửa.
a) Gọi \({m_0}\) là khối lượng của \({}_6^{14}C\) tại thời điểm \(t = 0\). Viết công thức tính khối lượng \(m\left( t \right)\) của \({}_6^{14}C\) tại thời điểm t (năm).
b) Một cây còn sống có lượng \({}_6^{14}C\) trong cây được duy trì không đổi. Nhưng nếu cây chết thì lượng \({}_6^{14}C\) trong cây phân rã theo chu kì bán rã của nó. Các nhà khảo cổ đã tìm thấy một mẫu gỗ cổ được xác định chết cách đây 2000 năm. Tính tỉ lệ phần trăm lượng \({}_6^{14}C\) còn lại trong mẫu gỗ cổ đó so với lúc còn sinh trưởng (làm tròn kết quả đến hàng phần mười).
Phương pháp giải - Xem chi tiết
Tìm ra được công thức tính khối lượng của chất đó còn lại sau t năm để suy ra tỉ lệ phần trăm lượng \({}_6^{14}C\) còn lại trong mẫu gỗ cổ đó so với lúc còn sinh trưởng.
Lời giải chi tiết
a) Chất phóng xạ có chu kì bán rã là T = 5730 (năm).
Cứ sau 5730 năm, khối lượng của chất phóng xạ đó giảm đi một nửa.
Suy ra khối lượng của chất đó còn lại sau t năm là:
\(m\left( t \right) = \frac{{{m_0}}}{{{2^{\frac{t}{T}}}}}\) trong đó m 0 là khối lượng của \({}_6^{14}C\) tại thời điểm \(t = 0\).
b) Từ công thức: \(m\left( t \right) = \frac{{{m_0}}}{{{2^{\frac{t}{T}}}}} \Rightarrow \frac{{m\left( t \right)}}{{{m_0}}} = \frac{1}{{{2^{\frac{t}{T}}}}}.\)
Suy ra tỉ lệ phần trăm lượng \({}_6^{14}C\) còn lại trong mẫu gỗ cổ đó so với lúc còn sinh trưởng là: \(\% {}_6^{14}C = \frac{{m\left( t \right)}}{{{m_0}}}.100\% = \frac{1}{{{2^{\frac{t}{T}}}}}.100\% = \frac{1}{{{2^{\frac{{2000}}{{5730}}}}}}.100\% \approx 78,5\% .\)