Giải bài 55 trang 118 sách bài tập toán 11 - Cánh diều — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Cánh diều Bài tập cuối chương IV - SBT Toán 11 CD


Giải bài 55 trang 118 sách bài tập toán 11 - Cánh diều

Cho tứ diện \(ABCD\). Trên cạnh \(CD\) lấy hai điểm \(M\) và \(N\) khác nhau

Đề bài

Cho tứ diện \(ABCD\). Trên cạnh \(CD\) lấy hai điểm \(M\) và \(N\) khác nhau. Chứng minh rằng các đường thẳng \(AM\) và \(BN\) không cắt nhau.

Phương pháp giải - Xem chi tiết

Chứng minh bằng phương pháp “phản chứng”: Giả sử \(AM\) cắt \(BN\), ta sẽ chứng minh được \(A\), \(B\), \(C\), \(D\) đồng phẳng, và đây là điều vô lí. Từ đó suy ra điều phải chứng minh.

Lời giải chi tiết

Giả sử \(AM\) cắt \(BN\). Như vậy tồn tại mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(AM\) và \(BN\).

Do \(M\) và \(N\) cùng nằm trên \(\left( P \right)\), ta suy ra đường thẳng \(MN\) cũng nằm trên \(\left( P \right)\). Từ đó \(C\) và \(D\) cũng thuộc \(\left( P \right)\).

Như vậy \(A\), \(B\), \(C\), \(D\) cùng thuộc mặt phẳng \(\left( P \right)\). Điều này là vô lí, do với mọi tứ diện \(ABCD\) thì 4 điểm \(A\), \(B\), \(C\), \(D\) luôn không đồng phẳng.

Do đó điều giả sử là sai.

Vậy hai đường thẳng \(AM\) và \(BN\) không cắt nhau.


Cùng chủ đề:

Giải bài 54 trang 118 sách bài tập toán 11 - Cánh diều
Giải bài 55 trang 30 sách bài tập toán 11 - Cánh diều
Giải bài 55 trang 50 sách bài tập toán 11 - Cánh diều
Giải bài 55 trang 57 sách bài tập toán 11 - Cánh diều
Giải bài 55 trang 117 sách bài tập toán 11 - Cánh diều
Giải bài 55 trang 118 sách bài tập toán 11 - Cánh diều
Giải bài 56 trang 30 sách bài tập toán 11 - Cánh diều
Giải bài 56 trang 50 sách bài tập toán 11 - Cánh diều
Giải bài 56 trang 57 sách bài tập toán 11 - Cánh diều
Giải bài 56 trang 117 sách bài tập toán 11 - Cánh diều
Giải bài 56 trang 118 sách bài tập toán 11 - Cánh diều