Processing math: 100%

Giải bài 56 trang 89 SBT toán 10 - Cánh diều — Không quảng cáo

SBT Toán 10 - Giải SBT Toán 10 - Cánh diều Bài 5. Phương trình đường tròn - SBT Toán 10 CD


Giải bài 56 trang 89 SBT toán 10 - Cánh diều

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x + 2)2 + (y − 4)2 = 25 và điểm A(-1; 3).

Đề bài

Trong mặt phẳng toạ độ Oxy , cho đường tròn ( C ): ( x + 2) 2 + ( y − 4) 2 = 25 và điểm A (-1; 3).

a) Xác định vị trí tương đối của điểm A đối với đường tròn ( C )

b) Đường thẳng d thay đổi đi qua A cắt đường tròn tại M N . Viết phương trình đường thẳng d sao cho MN ngắn nhất

Phương pháp giải - Xem chi tiết

Bước 1: Xác định tọa độ tâm I và bán kính R của (C)

Bước 2: So sánh độ dài IA và bán kính R để xét vị trí tương đối của A với ( C )

Bước 3: Áp dụng tính chất dây cung càng xa tâm có độ dài càng nhỏ để tìm GTLN của d(I,d)

Bước 4: Viết PTTQ của d với các yếu tố tìm được ở bước 3

Lời giải chi tiết

a) ( C ) có tâm I (-2 ; 4) và bán kính R = 5

Ta có: IA=(1;1)IA=2

Có: IA=2<R Điểm A nằm bên trong đường tròn ( C )

b) Theo giả thiết, d cắt ( C ) tại 2 điểm M , N thỏa mãn MN ngắn nhất khoảng cách từ tâm I đến d lớn nhất

Gọi H là hình chiếu của I trên d . Ta có: IHIA

IH đạt GTLN khi và chỉ khi H trùng với A

IAd d nhận IA=(1;1) làm vectơ pháp tuyến nên có PT: x y + 4 = 0


Cùng chủ đề:

Giải bài 55 trang 63 SBT toán 10 - Cánh diều
Giải bài 55 trang 89 SBT toán 10 - Cánh diều
Giải bài 55 trang 100 SBT toán 10 - Cánh diều
Giải bài 56 trang 17 SBT toán 10 - Cánh diều
Giải bài 56 trang 63 SBT toán 10 - Cánh diều
Giải bài 56 trang 89 SBT toán 10 - Cánh diều
Giải bài 56 trang 100 SBT toán 10 - Cánh diều
Giải bài 57 trang 90 SBT toán 10 - Cánh diều
Giải bài 57 trang 105 SBT toán 10 - Cánh diều
Giải bài 58 trang 90 SBT toán 10 - Cánh diều
Giải bài 58 trang 105 SBT toán 10 - Cánh diều