Giải bài 7. 52 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Kết nối tri thức với cuộc sống Bài tập cuối chương VII - SBT Toán 11 KNTT


Giải bài 7.52 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình chóp S.ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)

Đề bài

Cho hình chóp S.ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)

a) Chứng minh rằng\((SAC) \bot (SBD)\) và \((SAD) \bot (SCD)\)

b) Gọi BE, DF là hai đường cao của tam giác SBD. Chứng minh \((ACF) \bot (SBC)\) và \((AEF) \bot (SAC)\)

c) Tính theo a khoản cách giữa hai đường thẳng BD và SC

Phương pháp giải - Xem chi tiết

a) Chứng minh \(BD \bot \left( {SAC} \right)\) từ đó suy ra \(\left( {SBD} \right) \bot \left( {SAC} \right)\).

b) Chứng minh \(AF \bot \left( {SBC} \right)\) từ đó suy ra \(\left( {ACF} \right) \bot \left( {SBC} \right)\).

Chứng minh \(SC \bot \left( {AEF} \right)\) suy ra \(\left( {AEF} \right) \bot \left( {SAC} \right)\).

c) Dựng đoạn vuông góc chung của \(BD\) và \(SC\),

Tính độ dài đoạn vuông góc chung  của \(BD\) và \(SC\),

Lời giải chi tiết

a) Ta có: \(BD \bot AC,SA \bot \left( {ABCD} \right)\) nên \(SA \bot BD\), suy ra \(BD \bot \left( {SAC} \right)\), mà mặt phẳng \(\left( {SBD} \right)\) chứa đường thẳng \(BD\), do đó \(\left( {SBD} \right) \bot \left( {SAC} \right)\).

Ta có: \(CD \bot AD,CD \bot SA\), suy ra \(CD \bot \left( {SAD} \right)\), mà mặt phẳng \(\left( {SCD} \right)\) chứa đường thẳng \(CD\), do đó \(\left( {SCD} \right) \bot \left( {SAD} \right)\).

b) Ta có: \(AD \bot \left( {SAB} \right)\) nên \(AD \bot SB\), mà \(SB \bot DF\) suy ra \(SB \bot \left( {ADF} \right)\), do đó

\(SB \bot AF\).

Ta lại có \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AF\), suy ra \(AF \bot \left( {SBC} \right)\), mà mặt phẳng \(\left( {ACF} \right)\) chứa đường thẳng \(AF\) nên \(\left( {ACF} \right) \bot \left( {SBC} \right)\).

Vì \(AF \bot \left( {SBC} \right)\) nên \(AF \bot SC\).

Tương tự, ta có \(AE \bot \left( {SCD} \right)\) nên \(AE \bot SC\), suy ra \(SC \bot \left( {AEF} \right)\), mà mặt phẳng \(\left( {SAC} \right)\) chứa đường thẳng \(SC\) nên \(\left( {AEF} \right) \bot \left( {SAC} \right)\).

c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\), kẻ \(OH \bot SC\) tại \(H\), mà \(BD \bot \left( {SAC} \right)\) nên \(OH \bot BD\), suy ra \(OH\) là đoạn vuông góc chung của \(BD\) và \(SC\), hay \(d\left( {BD,SC} \right) = OH\)

Ta có: \(\Delta CHO\) đồng dạng với  \(\Delta CAS\) nên \(\frac{{OC}}{{CS}} = \frac{{OH}}{{AS}}\), suy ra \(OH = \frac{{AS \cdot OC}}{{CS}} = \frac{a}{2}\).

Vậy \(d\left( {BD,SC} \right) = \frac{a}{2}\).


Cùng chủ đề:

Giải bài 7. 47 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 48 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 49 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 50 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 51 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 52 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 53 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 54 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 55 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 7. 56 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 8 trang 67 sách bài tập toán 11 - Kết nối tri thức với cuộc sống