Giải bài 8 trang 127 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài tập cuối chương X trang 124, 125, 126 Vở thực hành


Giải bài 8 trang 127 vở thực hành Toán 9 tập 2

Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng (200c{m^3}). Tính thể tích của cả chiếc kem.

Đề bài

Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng \(200c{m^3}\). Tính thể tích của cả chiếc kem.

Phương pháp giải - Xem chi tiết

+ Ta có \({V_1} = \frac{1}{2}.\frac{4}{3}\pi {R^3} = 200\left( {c{m^3}} \right)\), từ đó tính được R.

+ Tính thể tích của phần kem phía dưới.

+ Thể tích chiếc kem bằng tổng thể tích phía trên và phía dưới chiếc kem.

Lời giải chi tiết

Thể tích phần kem phía trên là \(200c{m^3}\) nên:

\({V_1} = \frac{1}{2}.\frac{4}{3}\pi {R^3} = 200\left( {c{m^3}} \right)\),

suy ra \(R = \sqrt[3]{{\frac{{300}}{\pi }}}cm\).

Thể tích phần kem phía dưới là:

\({V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {R^2}.2R \\= \frac{2}{3}\pi {R^3} = \frac{2}{3}\pi .\frac{{300}}{\pi } = 200\left( {c{m^3}} \right).\)

Thể tích cả chiếc kem là: \(200 + 200 = 400\left( {c{m^3}} \right)\).


Cùng chủ đề:

Giải bài 8 trang 101 vở thực hành Toán 9 tập 2
Giải bài 8 trang 105, 106 vở thực hành Toán 9 tập 2
Giải bài 8 trang 109 vở thực hành Toán 9 tập 2
Giải bài 8 trang 118, 119 vở thực hành Toán 9 tập 2
Giải bài 8 trang 124, 125 vở thực hành Toán 9
Giải bài 8 trang 127 vở thực hành Toán 9 tập 2
Giải bài 8 trang 133, 134 vở thực hành Toán 9 tập 2
Giải bài 9 trang 9 vở thực hành Toán 9 tập 2
Giải bài 9 trang 15 vở thực hành Toán 9 tập 2
Giải bài 9 trang 27 vở thực hành Toán 9
Giải bài 9 trang 37, 38 vở thực hành Toán 9 tập 2