Giải bài 89 trang 40 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = \frac{{a{x^2} + b{\rm{x}} + c}}{{m{\rm{x}} + n}}\) (với \(a,m \ne 0\)) có đồ thị là đường cong như Hình 26. Giá trị cực đại của hàm số là: A. 0. B. ‒1. C. 2. D. 3.
Đề bài
Cho hàm số \(y = \frac{{a{x^2} + b{\rm{x}} + c}}{{m{\rm{x}} + n}}\) (với \(a,m \ne 0\)) có đồ thị là đường cong như Hình 26 . Giá trị cực đại của hàm số là:
A. 0.
B. ‒1.
C. 2.
D. 3.
Phương pháp giải - Xem chi tiết
Dựa vào đồ thị hàm số xác định các cực trị của hàm số.
Lời giải chi tiết
Dựa vào đồ thị ta có: Hàm số đạt cực đại tại \(x = 2\). Khi đó giá trị cực tiểu bằng ‒1.
Chọn B.
Cùng chủ đề:
Giải bài 89 trang 40 sách bài tập toán 12 - Cánh diều