Giải bài 91 trang 40 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = x + sqrt {1 - {x^2}} ) bằng: A. (sqrt 2 ). B. (sqrt 5 ). C. 1. D. 2.
Đề bài
Giá trị lớn nhất của hàm số \(y = x + \sqrt {1 - {x^2}} \) bằng:
A. \(\sqrt 2 \).
B. \(\sqrt 5 \).
C. 1.
D. 2.
Phương pháp giải - Xem chi tiết
Tìm tập xác định của hàm số, sau đó tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn.
Lời giải chi tiết
Hàm số có tập xác định là \(\left[ { - 1;1} \right]\).
Ta có: \(y' = 1 + \frac{{{{\left( {1 - {x^2}} \right)}^\prime }}}{{2\sqrt {1 - {x^2}} }} = 1 - \frac{{2{\rm{x}}}}{{2\sqrt {1 - {x^2}} }} = 1 - \frac{{\rm{x}}}{{\sqrt {1 - {x^2}} }}\)
Khi đó, trên đoạn \(\left[ { - 1;1} \right]\), \(y' = 0\) khi \(x = - \frac{{\sqrt 2 }}{2}\) hoặc \(x = \frac{{\sqrt 2 }}{2}\).
\(y\left( { - 1} \right) = - 1;y\left( { - \frac{{\sqrt 2 }}{2}} \right) = 0;y\left( {\frac{{\sqrt 2 }}{2}} \right) = \sqrt 2 ;y\left( 1 \right) = 1\).
Vậy \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = \sqrt 2 \) tại \(x = \frac{{\sqrt 2 }}{2}\).
Chọn A.