Giải bài 92 trang 40 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x - 2sin x) trên đoạn (left[ {0;pi } right]) lần lượt là: A. (M = pi ,m = frac{pi }{3} - sqrt 3 ). B. (M = pi ,m = 0). C. (M = pi ,m = frac{pi }{6} - 1). D. (M = pi ,m = frac{{2pi }}{3} - sqrt 3 ).
Đề bài
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=x−2sinx trên đoạn [0;π] lần lượt là:
A. M=π,m=π3−√3
B. M=π,m=0
C. M=π,m=π6−1
D. M=π,m=2π3−√3
Phương pháp giải - Xem chi tiết
Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b]:
Bước 1. Tìm các điểm x1,x2,...,xn thuộc khoảng (a;b) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 2. Tính f(x1),f(x2),...,f(xn),f(a) và f(b).
Bước 3. So sánh các giá trị tìm được ở Bước 2.
Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số f(x) trên đoạn [a;b], số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b].
Lời giải chi tiết
Ta có: y′=1−2cosx
Khi đó, trên đoạn [0;π], y′=0 khi x=π3.
y(0)=0;y(π3)=π3−√3;y(π)=π.
Vậy M=max[0;π]y=π tại x=π; m=min[0;π]y=π3−√3 tại x=π3.
Chọn A.