Giải bài tập 6 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố độc lập (A) và (B) có (Pleft( A right) = 0,4;Pleft( B right) = 0,8). Tính (Pleft( {A|A cup B} right)). Làm tròn kết quả đến hàng phần trăm.
Đề bài
Cho hai biến cố độc lập \(A\) và \(B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8\). Tính \(P\left( {A|A \cup B} \right)\). Làm tròn kết quả đến hàng phần trăm.
Phương pháp giải - Xem chi tiết
‒ Sử dụng quy tắc nhân xác suất: Nếu \(A\) và \(B\) là hai biến cố độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
‒ Sử dụng quy tắc cộng xác suất: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết
Vì \(A\) và \(B\) là hai biến cố độc lập nên theo quy tắc nhân xác suất ta có:
\(P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,4.0,8 = 0,32\).
Theo quy tắc cộng xác suất ta có:
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,8 - 0,32 = 0,88\).