Giải bài tập 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Một công ty bảo hiểm ô tô nhận thấy nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2; còn nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05. Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1. Sử dụng sơ đồ hình cây: a) Tính xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe. b) Tính xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe. Làm tròn kết quả đến hàng phần trăm.
Đề bài
Một công ty bảo hiểm ô tô nhận thấy nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2; còn nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05. Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1. Sử dụng sơ đồ hình cây:
a) Tính xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe.
b) Tính xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe. Làm tròn kết quả đến hàng phần trăm.
Phương pháp giải - Xem chi tiết
Sử dụng sơ đồ hình cây.
Lời giải chi tiết
Gọi A là biến cố “Tài xế không gặp sự cố trong năm đầu tiên lái xe”, B là biến cố “Tài xế không gặp sự cố trong năm thứ hai lái xe”.
Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1 nên ta có P(¯A)=0,1.
Do đó P(A)=1−P(¯A)=1−0,1=0,9.
Nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2 nên ta có P(¯B|¯A)=0,2.
Do đó P(B|¯A)=1−P(¯B|¯A)=1−0,2=0,8.
Nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05 nên ta có P(¯B|A)=0,05.
Do đó P(B|A)=1−P(¯B|A)=1−0,05=0,95.
Ta có sơ đồ hình cây như sau:
a) Xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe là: P(AB)=0,855.
b) Xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe là P(¯A¯B)=0,02.