Giải mục 2 trang 22, 23 SGK Toán 11 tập 2 - Cùng khám phá
Ta biết: Với (C1) là đồ thị của hàm số y = f(x) và (C2) là đồ thị của hàm số y = g(x)
Hoạt động 2
Ta biết: Với (C 1 ) là đồ thị của hàm số y = f(x) và (C 2 ) là đồ thị của hàm số y = g(x) thì tập hợp giá trị của x để (C 1 ) nằm phía trên (C 2 ) là tập nghiệm của bất phương trình f(x) > g(x).
Quan sát các đồ thị (Hình 6.21 và 6.22) trong Hoạt động 1 và trong mỗi trường hợp, hãy tìm các tập nghiệm của bất phương trình a x > b:
a) Khi b > 0;
b) Khi b ≤ 0.
Phương pháp giải:
Quan sát hình vẽ.
Lời giải chi tiết:
a) Khi b > 0:
a > 1: a x > b \( \Leftrightarrow x > {\log _a}b\)
0 < a < 1: a x > b \( \Leftrightarrow x < {\log _a}b\)
b) Khi b ≤ 0 thì bất phương trình nghiệm đúng với mọi \(x \in \mathbb{R}\).
Luyện tập 2
Giải các bất phương trình sau:
a) \({2^{x + 1}} > {2^{3x + 5}}\)
b) \({\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \le \frac{9}{7}\)
Phương pháp giải:
Khi a > 1: \({a^{A\left( x \right)}} > {a^{B\left( x \right)}} \Leftrightarrow A\left( x \right) > B\left( x \right)\)
Khi 0 < a < 1: \({a^{A\left( x \right)}} > {a^{B\left( x \right)}} \Leftrightarrow A\left( x \right) < B\left( x \right)\)
Lời giải chi tiết:
a)
\(\begin{array}{l}{2^{x + 1}} > {2^{3x + 5}}\\ \Leftrightarrow x + 1 > 3x + 5\\ \Leftrightarrow - 2x > 4\\ \Leftrightarrow x < - 2\end{array}\)
Vậy tập nghiệm của bất phương trình đã cho là \(\left( { - \infty ; - 2} \right)\).
b)
\(\begin{array}{l}{\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \le \frac{9}{7}\\ \Leftrightarrow {\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \le {\left( {\frac{7}{9}} \right)^{ - 1}}\\ \Leftrightarrow 2{x^2} - 3x \ge - 1\\ \Leftrightarrow 2{x^2} - 3x + 1 \ge 0\\ \Leftrightarrow \left[ \begin{array}{l}x \ge 1\\x \le \frac{1}{2}\end{array} \right.\end{array}\)
Vậy tập nghiệm của bất phương trình đã cho là \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right)\).