Processing math: 21%

Giải mục 2 trang 43, 44 SGK Toán 11 tập 2 - Cánh Diều — Không quảng cáo

Toán 11, giải toán lớp 11 cánh diều Bài 3. Hàm số mũ. Hàm số lôgarit Toán 11 Cánh Diều


Giải mục 2 trang 43, 44 SGK Toán 11 tập 2 - Cánh Diều

Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Hoạt động 4

Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Phương pháp giải:

Dựa vào hàm lôgarit đã học rồi thay số

Lời giải chi tiết:

Luyện tập – Vận dụng 3

Cho hai ví dụ về hàm số lôgarit

Phương pháp giải:

Dựa vào định nghĩa hàm số lôgarit để xác định

Lời giải chi tiết:

log3x;log5(x+2)

Hoạt động 5

Cho hàm số lôgarit y=log2x

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b,     Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.

Bằng cách làm tương tự, lấy nhiều điểm (x;log2x) với x(0;+) và nối lại ta được đồ thị hàm số y=log2x như hình bên.

c,     Cho biết tọa độ giao điểm của đồ thị hàm số y=log2x với trục hoành và vị trí của đồ thị hàm số đó với trục tung.

d,   Quan sát đồ thị hàm số y=log2x, nêu nhận xét về:

  • lim
  • Sự biến thiên của hàm số y = {\log _2}x và lập bảng biến thiên của hàm số đó

Phương pháp giải:

Áp dụng kiến thức đã học về giới hạn và lôgarit để trả lời câu hỏi

Lời giải chi tiết:

a)     y = {\log _2}x

b,   Biểu diễn các điểm ở câu a:

c,   Tọa độ giao điểm của đồ thị hàm số  với trục hoành y = {\log _2}xlà (1;0)

Đồ thị hàm số đó không cắt trục tung.

d,     \mathop {\mathop {\lim }\limits_{x \to {0^ + }} ({{\log }_2}x)}\limits_{}  = 0;\mathop {\,\,\mathop {\lim }\limits_{x \to  + \infty } ({{\log }_2}x)}\limits_{}  =  + \infty

Hàm số y = {\log _2}x đồng biến trên toàn (0; + \infty )

Bảng biến thiên của hàm số:

Hoạt động 6

Cho hàm số lôgarit y = {\log _{\frac{1}{2}}}x

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b,    Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.

Bằng cách làm tương tự, lấy nhiều điểm \left( {x;{{\log }_{\frac{1}{2}}}x} \right) với x \in (0; + \infty ) và nối lại ta được đồ thị hàm số y = {\log _{\frac{1}{2}}}x như hình bên.

c,   Cho biết tọa độ giao điểm của đồ thị hàm số y = {\log _{\frac{1}{2}}}x với trục hoành và vị trí của đồ thị hàm số đó với trục tung.

d,     Quan sát đồ thị hàm số y = {\log _{\frac{1}{2}}}x, nêu nhận xét về:

  • \mathop {\lim }\limits_{x \to {0^ + }} ({\log _{\frac{1}{2}}}x)\,;\mathop {\,\,\mathop {\lim }\limits_{x \to  + \infty } ({{\log }_{\frac{1}{2}}}x)}\limits_{}
  • Sự biến thiên của hàm số y = {\log _{\frac{1}{2}}}x và lập bảng biến thiên của hàm số đó.

Phương pháp giải:

Áp dụng kiến thức đã học về giới hạn và lũy thừa để trả lời câu hỏi

Lời giải chi tiết:

a)     y = {\log _{\frac{1}{2}}}x

b,    Biểu diễn các điểm ở câu a:

c,    Tọa độ giao điểm của đồ thị hàm số  với trục hoành y = {\log _{\frac{1}{2}}}xlà (1;0)

Đồ thị hàm số đó không cắt trục tung

c)     \mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{2}}}x = 0;\,\,\mathop {\lim }\limits_{x \to  + \infty } {\log _{\frac{1}{2}}}x =  - \infty

Hàm số y = {\log _{\frac{1}{2}}}x nghịch biến trên toàn (0; + \infty )

Bảng biến thiên của hàm số:

Luyện tập – Vận dụng 4

Lập bảng biến thiên và vẽ đồ thị hàm số y = {\log _{\frac{1}{3}}}x

Phương pháp giải:

Dựa vào bảng biến thiên và đồ thị hàm số y = {\log _{\frac{1}{2}}}x để làm

Lời giải chi tiết:

\mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{3}}}x = 0;\,\,\mathop {\lim }\limits_{x \to  + \infty } {\log _{\frac{1}{3}}}x =  - \infty

Hàm số y = {\log _{\frac{1}{3}}}x nghịch biến trên toàn (0; + \infty )

Bảng biến thiên của hàm số:


Cùng chủ đề:

Giải mục 2 trang 18 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 2 trang 24, 25 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 2 trang 30, 31 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 2 trang 33, 34, 35 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 2 trang 35, 36, 37 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 2 trang 43, 44 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 2 trang 45, 46 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 2 trang 50 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 2 trang 51, 52, 53 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 2 trang 54, 55 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 2 trang 62 SGK Toán 11 tập 1 - Cánh Diều