Tam giác ABC có độ dài \(AB = 9cm,AC = 12cm,BC = 14cm\). Tam giác A’B’C’ đồng dạng với tam giác ABC và có chu vi bằng 61,25cm
a) Tam giác ABC và MBN (Hình 4) có đồng dạng với nhau không? Vì sao?
Cho tam giác MAB và ABN như Hình 5. Biết \(MA = 10cm,MB = 15cm,AB = 8cm,NA = 12cm,NB = 6,4cm\). Chứng minh rằng:
Anh Minh dự định thiết kế sân vườn nhà mình có hai bồn hoa hình tam giác đồng dạng với nhau (Hình 6).
Quan sát Hình 7. Chứng minh rằng \(\widehat {OBA} = \widehat {OAC}\).
Quan sát Hình 8. a) Chứng minh rằng $Delta ABCbacksim Delta DEF$.
Cho tam giác ABC có \(AB = 12,AC = 15\). Lấy điểm M thuộc cạnh AB và điểm N thuộc cạnh AC sao cho \(AM = 7,5,AN = 6\).
Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC và AB, hai đường thẳng này cắt nhau tại M.
Quan sát Hình 9. a) Chứng minh rằng $\Delta ABC\backsim \Delta MNQ$. b) Tính x, y.
Trong Hình 10, cho biết \(AB = 4,2,IA = 6,IC = 10,\widehat {ABI} = {60^0}\), \(\widehat {CDx} = {120^0}\). Tính độ dài CD.
Quan sát Hình 11. Vẽ vào tờ giấy tam giác MNP với \(NP = 6cm,\widehat N = {45^0},\widehat P = {75^0}\).
Trong Hình 12, cho biết tứ giác ABCD là hình thang. Biết DB là tia phân giác của góc ADC và \(\widehat {DAB} = \widehat {DBC}\).
Cho tam giác ABC có ba góc nhọn. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho \(\widehat {ADE} = \widehat {ACB}\).