1. Định nghĩa Đường thẳng d được gọi là vuông góc với mặt phẳng (P) nếu đường thẳng d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (P), kí hiệu \(d \bot \left( P \right)\) hoặc \(\left( P \right) \bot d\).
Trong Hình 9, cột gỗ thẳng đứng và sàn nhà nằm ngang gợi nên hình ảnh đường thẳng vuông góc với mặt phẳng.
Hình 10 mô tả một người thợ xây đang thả dây dọi vuông góc với nền nhà.
Hình 12 mô tả cửa tròn xoay, ở đó trục cửa và hai mép cửa gợi nên hình ảnh các đường thẳng d
Cho điểm O và đường thẳng a.
Trong Hình 19, hai thanh sắt và bản phẳng để ngồi gợi nên hình ảnh hai đường thẳng a, b và mặt phẳng (P).
Trong mặt phẳng (P). Xét một điểm M tùy ý trong không gian.
Trong Hình 27, mặt sàn gợi nên hình ảnh mặt phẳng (P), đường thẳng a không vuông góc với mặt phẳng (P)
Quan sát Hình 30 (hai cột của biển báo, mặt đường)
Cho hình chóp S.ABC. Gọi H là hình chiếu của S trên mặt phẳng (ABC).
Cho tứ diện ABCD có (AB bot (BCD)), các tam giác BCD và ACD là những tam giác nhọn.
Cho tứ diện ABCD có (AB bot (BCD),BC bot CD). Gọi M và N lần lượt là hình chiếu vuông góc của B trên AC và AD. Chứng minh rằng:
Cho hình chóp O.ABC có (widehat {AOB} = widehat {BOC} = widehat {COA} = 90^circ ). Chứng minh rằng: