1. Hàm số mũ Cho số thực a ( a > 0, a \( \ne \) 1). Hàm số \(y = {a^x}\) được gọi là hàm số mũ cơ số a.
Xét bài toán ở phần mở đầu.
Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
Lập bảng biến thiên và vẽ đồ thị hàm số:
Tìm tập xác định của các hàm số:
Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?
Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức \(S = A.{e^{r.t}}\).
Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: \(f(t) = c(1 - {e^{ - kt}})\)
Chỉ số hay độ pH của một dung dịch được tính theo công thức: \(pH = - \log [{H^ + }]\).
Một người gửi 10 triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất 6%/ năm.