1. Tam giác cân và tính chất
Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.
Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB. Gấp mảnh giấy lại như Hình 4.63 sao cho vị trí các điểm A và B trùng nhau. Mở mảnh giấy ra, kẻ một đường thẳng d theo nếp gấp. a) Gọi O là giao điểm của đường thẳng d và AB. O có là trung điểm của đoạn thẳng AB không? b) Dùng thước đo góc, kiểm tra đường thẳng d có vuông góc với AB không?
Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB (H.4.69). Chứng minh rằng BE = CF.
Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A. b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân. Hãy giải thích các khẳng định sau: a) Tam giác vuông cân thì cân tại đỉnh góc vuông; b) Tam giác vuông cân có hai góc nhọn bằng 45°; c) Tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân.
Trong Hình 4.70, đường thẳng nào là đường trung trực của đoạn thẳng AB?
Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC.