Bài 14 trang 106 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây


Bài 14 trang 106 SGK Toán 9 tập 1

Cho đường tròn tâm O bán kính 25cm, dây AB bằng 40cm. Vẽ dây CD song song với AB và có khoảng cách đến AB bằng 22cm.

Đề bài

Cho đường tròn tâm \(O\) bán kính \(25cm\), dây \(AB\) bằng \(40cm\). Vẽ dây \(CD\) song song với \(AB\) và có khoảng cách đến \(AB\) bằng \(22cm\). Tính độ dài dây \(CD\).

Phương pháp giải - Xem chi tiết

+) Kẻ đường kính vuông góc với dây.

+) Sử dụng định lý: Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây ấy.

+) Sử dụng định lí Pytago: \(\Delta{ABC}\) vuông tại \(A\) thì \(BC^2=AB^2+AC^2\).

Lời giải chi tiết

Vẽ \(OH\perp AB\), đường thẳng \(OH\) cắt \(CD\) tại \(K\).

Vì \(AB // CD\) mà \(OH\perp AB\) suy ra \(OH \perp CD\) hay \(OK \perp CD\).

Ta có \(OK \bot DC\) và \(OH \bot AB\) nên \(KC=KD=\dfrac {CD}2\) và \(AH=HB=\dfrac {AB}2\) (vì đường kính vuông góc với dây thì đi qua trung điểm của dây ấy)

Ta có: \(OB=OD=R=25cm\).

Áp dụng định lí Pytago vào tam giác \(OBH\) vuông tại \(H\), ta có:

\(OB^2=OH^2+HB^2 \Rightarrow OH^2=OB^2-HB^2\)

\(\Leftrightarrow OH=\sqrt{OB^2-\left ( \dfrac{AB}{2} \right )^2}\)

\(=\sqrt{25^2-\left ( \dfrac{40}{2} \right )^2}=15(cm)\)

Lại có: \(HK=OH+OK \)

\(\Rightarrow OK=HK-OH=22-15=7(cm)\)

Áp dụng định lí Pytago vào tam giác \(OKD\) vuông tại \(K\), ta có:

\(OD^2=OK^2+KD^2\)

\(\Rightarrow KD^2=OD^2-OK^2=25^2-7^2=576\)

\(KD=\sqrt{576}=24(cm)\)

\(\Rightarrow CD=2KD=48(cm)\)


Cùng chủ đề:

Bài 14 trang 15 SGK Toán 9 tập 2
Bài 14 trang 43 SGK Toán 9 tập 2
Bài 14 trang 48 SGK Toán 9 tập 1
Bài 14 trang 72 SGK Toán 9 tập 2
Bài 14 trang 77 SGK Toán 9 tập 1
Bài 14 trang 106 SGK Toán 9 tập 1
Bài 14 trang 113 SGK Toán 9 tập 2
Bài 14 trang 133 SGK Toán 9 tập 2
Bài 14 trang 135 SGK Toán 9 tập 2
Bài 15 trang 11 SGK Toán 9 tập 1
Bài 15 trang 15 SGK Toán 9 tập 2