Bài 14 trang 77 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 2. Tỉ số lượng giác của góc nhọn


Bài 14 trang 77 SGK Toán 9 tập 1

Sử dụng định nghĩa tỉ số các lượng giác của một góc nhọn để chứng minh...

Đề bài

Sử dụng định nghĩa tỉ số các lượng giác của một góc nhọn để chứng minh rằng: Với góc nhọn \(\alpha\) tùy ý, ta có:

a) \(\tan \alpha =\dfrac{\sin\alpha }{\cos \alpha};\)   \(\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha };\)         \(\tan \alpha . \cot \alpha =1\);

b) \(\sin^{2} \alpha +\cos^{2} \alpha =1\)

Gợi ý: Sử dụng định lý Py-ta-go.

Phương pháp giải - Xem chi tiết

+) Áp dụng công thức tính tỉ số lượng giác của một góc nhọn:

\(\sin \alpha =\dfrac{cạnh\ đối}{cạnh\ huyền};\)         \(\cos \alpha = \dfrac{cạnh\ kề}{cạnh\ huyền}\);

\(\tan \alpha = \dfrac{cạnh\ đối}{cạnh\ kề};\)             \(\cot \alpha =\dfrac{cạnh\ kề}{cạnh\ đối}.\)

+) Sử dụng định lí Pytago trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\), khi đó:

\(BC^2=AB^2+AC^2\)

Lời giải chi tiết

Xét \(\Delta{ABC}\) vuông tại \(A\), có \(\widehat{ACB}=\alpha\).

+) \(\Delta{ABC}\), vuông tại \(A\), theo định nghĩa tỷ số lượng giác của góc nhọn, ta có:

\(\sin \alpha = \dfrac{AB}{BC}\),  \(\cos \alpha =\dfrac{AC}{BC}\)

\(\tan \alpha =\dfrac{AB}{AC}\),    \(\cot \alpha =\dfrac{AC}{AB}\).

* Chứng minh \(\tan \alpha = \dfrac{\sin \alpha}{\cos \alpha}\).

\(VP=\dfrac{\sin \alpha}{\cos \alpha}=\dfrac{AB}{BC} : \dfrac{AC}{BC}=\dfrac{AB}{BC}.\dfrac{BC}{AC}=\dfrac{AB}{AC}= \tan \alpha =VT\)

(Trong đó VT là vế trái của đẳng thức; VP là vế phải của đẳng thức)

* Chứng minh \( \cot \alpha =\dfrac{\cos \alpha}{\sin \alpha}\).

\(VP=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{AC}{BC} : \dfrac{AB}{BC}=\dfrac{AC}{BC}. \dfrac{BC}{AB}=\dfrac{AC}{AB}=\cot \alpha=VT\)

* Chứng minh \(\tan \alpha . \cot \alpha =1\).

Ta có: \(VT=\tan \alpha . \cot \alpha \)

\(= \dfrac{AB}{AC}.\dfrac{AC}{AB}=1=VP\)

b) \(\Delta{ABC}\) vuông tại \(A\), áp dụng định lí Pytago, ta được:

\(BC^2=AC^2+AB^2\)   (1)

Xét \(\sin ^{2} \alpha +\cos^{2}\alpha \)

\(\;\;\;={\left(\dfrac{AB}{BC} \right)^2}+ {\left(\dfrac{AC}{BC} \right)^2}= \dfrac{AB^{2}}{BC^{2}}+\dfrac{AC^{2}}{BC^{2}} = {{B{C^2}} \over {B{C^2}}} = 1 \)

Như vậy \(\sin^{2} \alpha +\cos^{2} \alpha =1\) (điều phải chứng minh)

Nhận xét: Ba hệ thức:

\(\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\);  \(\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }\) và  \(\sin^{2} \alpha +\cos^{2}  \alpha =1\) là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.


Cùng chủ đề:

Bài 14 trang 11 SGK Toán 9 tập 1
Bài 14 trang 15 SGK Toán 9 tập 2
Bài 14 trang 43 SGK Toán 9 tập 2
Bài 14 trang 48 SGK Toán 9 tập 1
Bài 14 trang 72 SGK Toán 9 tập 2
Bài 14 trang 77 SGK Toán 9 tập 1
Bài 14 trang 106 SGK Toán 9 tập 1
Bài 14 trang 113 SGK Toán 9 tập 2
Bài 14 trang 133 SGK Toán 9 tập 2
Bài 14 trang 135 SGK Toán 9 tập 2
Bài 15 trang 11 SGK Toán 9 tập 1