Loading [MathJax]/jax/output/CommonHTML/jax.js

Bài 22 trang 111 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn


Bài 22 trang 111 SGK Toán 9 tập 1

Cho đường thẳng d, điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d.

Đề bài

Cho đường thẳng d, điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d. Hãy dựng đường tròn (O) đi qua điểm B và tiếp xúc với đường thẳng d tại A.

Phương pháp giải - Xem chi tiết

+) Bài toán dựng hình chia làm 4 bước:

Bước 1. Phân tích: giả sử hình cần dựng đã được vẽ. Lập luận để tìm cách dựng được hình.

Bước 2. Dựng hình: Dựa vào bước phân tích trên liệt kê thứ tự các phép dựng hình cơ bản.

Bước 3. Chứng minh: Bằng lí luận, chứng minh hình vừa dựng thỏa mãn tất cả các giả thiết của bài toán.

Bước 4. Biện luận: thiết lập điều kiện giải được của bài toán. Tức là xét xem bài toán giải được trong trường hợp nào và có bao nhiêu nghiệm.

+) Sử dụng các tính chất: Mọi điểm nằm trên đường trung trực của đoạn AB thì cách đều hai điểm A, B

Lời giải chi tiết

Phân tích:

Giả sử đã dựng được đường tròn thỏa mãn đề bài.

Tâm O thỏa mãn hai điều kiện:

- O nằm trên đường trung trực của AB (vì đường tròn đi qua AB).

- O nằm trên đường thẳng vuông góc với d tại A (vì đường tròn tiếp xúc với đường thẳng d tại A).

Vậy O là giao điểm của hai đường thẳng nói trên.

Cách dựng:

- Dựng đường trung trực m của AB.

- Từ A dựng một đường thẳng vuông góc với d cắt đường thẳng m tại O.

- Dựng đường tròn (O; OA). Đó là đường tròn phải dựng.

Chứng minh:

O nằm trên đường trung trực của AB nên OA=OB, do đó đường tròn (O;OA) đi qua AB.

Đường thẳng dOA tại A nên đường thẳng d tiếp xúc với đường tròn (O) tại A.

Biện luận: Bài toán luôn có nghiệm hình.


Cùng chủ đề:

Bài 22 trang 19 SGK Toán 9 tập 2
Bài 22 trang 49 SGK Toán 9 tập 2
Bài 22 trang 55 SGK Toán 9 tập 1
Bài 22 trang 76 SGK Toán 9 tập 2
Bài 22 trang 84 SGK Toán 9 tập 1
Bài 22 trang 111 SGK Toán 9 tập 1
Bài 22 trang 118 SGK Toán 9 tập 2
Bài 23 trang 15 SGK Toán 9 tập 1
Bài 23 trang 19 SGK Toán 9 tập 2
Bài 23 trang 50 SGK Toán 9 tập 2
Bài 23 trang 55 SGK Toán 9 tập 1