Bài 25 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài tập cuối năm Toán 11 Kết nối tri thức


Bài 25 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức

Tính các giới hạn sau:

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{1 + 3 + 5 +  \cdots  + (2n - 1)}}{{{n^2} + 2n + 3}}\).

b) \(\mathop {\lim }\limits_{n \to  + \infty } \left( {1 + \frac{2}{3} + \frac{4}{9} +  \cdots  + \frac{{{2^n}}}{{{3^n}}}} \right)\);

c) \(\mathop {\lim }\limits_{x \to  - 2} \frac{{2{x^2} + 3x - 2}}{{{x^2} - 4}}\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {4{x^2} + x + 1}  + 2x} \right)\).

Phương pháp giải - Xem chi tiết

- Sử dụng các quy tắc, một số giới hạn đặc biệt để tìm giới hạn

- Tổng cấp số cộng \({S_n} = \frac{{{u_1} + {u_n}}}{2}.n\)

- Tổng cấp số nhân \({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}\)

Lời giải chi tiết

a) Ta có 1, 3, 5,…, 2n – 1 là cấp số cộng gồm \(\frac{{2n - 1 - 1}}{2} + 1 = n\) số hạng

Do đó

\(\mathop {\lim }\limits_{n \to  + \infty } \frac{{1 + 3 + 5 +  \cdots  + (2n - 1)}}{{{n^2} + 2n + 3}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\frac{{1 + 2n - 1}}{2}.n}}{{{n^2} + 2n + 3}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^2}}}{{{n^2} + 2n + 3}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{1 + \frac{2}{n} + \frac{3}{{{n^2}}}}} = 1\)

b) \(\mathop {\lim }\limits_{n \to  + \infty } \left( {1 + \frac{2}{3} + \frac{4}{9} +  \cdots  + \frac{{{2^n}}}{{{3^n}}}} \right)\)

Ta có \(1,\frac{2}{3},\frac{4}{9}, \cdots ,\frac{{{2^n}}}{{{3^n}}}\) là cấp số nhân có \({u_1} = 1,q = \frac{2}{3}\)  và gồm n + 1 số hạng nên

\(1 + \frac{2}{3} + \frac{4}{9} +  \cdots  + \frac{{{2^n}}}{{{3^n}}} = \frac{{1 - {{\left( {\frac{2}{3}} \right)}^{n + 1}}}}{{1 - \frac{2}{3}}} = 3 - 3.{\left( {\frac{2}{3}} \right)^{n + 1}}\)

Do đó \(\mathop {\lim }\limits_{n \to  + \infty } \left( {1 + \frac{2}{3} + \frac{4}{9} +  \cdots  + \frac{{{2^n}}}{{{3^n}}}} \right) = \mathop {\lim }\limits_{n \to  + \infty } \left[ {3 - 3.{{\left( {\frac{2}{3}} \right)}^{n + 1}}} \right] = 3 - 3.0 = 3\)

c) \(\mathop {\lim }\limits_{x \to  - 2} \frac{{2{x^2} + 3x - 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to  - 2} \frac{{\left( {x + 2} \right)\left( {2x - 1} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to  - 2} \frac{{2x - 1}}{{x - 2}} = \frac{{2.\left( { - 2} \right) - 1}}{{ - 2 - 2}} = 2\)

d)

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {4{x^2} + x + 1}  + 2x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{4{x^2} + x + 1 - 4{x^2}}}{{\sqrt {4{x^2} + x + 1}  - 2x}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x + 1}}{{\sqrt {4{x^2} + x + 1}  - 2x}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{1 + \frac{1}{x}}}{{ - \sqrt {4 + \frac{1}{x} + \frac{1}{{{x^2}}}}  - 2}} = \frac{{1 + 0}}{{ - \sqrt {4 + 0 + 0}  - 2}} = \frac{{ - 1}}{4}\)


Cùng chủ đề:

Bài 20 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 21 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 22 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 23 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 24 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 25 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 26 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 27 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 28 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 29 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức
Bài 30 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức