Bài 5 trang 69 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 1. Một số hệ thức về cạnh và đường cao trong tam gi


Bài 5 trang 69 SGK Toán 9 tập 1

Trong tam giác vuông với các cạnh góc vuông có độ dài là 3 và 4, kẻ đường cao ứng với cạnh huyền.

Đề bài

Trong tam giác vuông với các cạnh góc vuông có độ dài là \(3\) và \(4\), kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và độ dài các đoạn thẳng mà nó định ra trên cạnh huyền.

Phương pháp giải - Xem chi tiết

+) Dùng định lí Pytago để tính cạnh huyền.

+) Dùng hệ thức \(h.a=b.c\). Biết hai cạnh góc vuông \(b,\ c\) và cạnh huyền \(a\) tính được đường cao \(h\).

+) Biết cạnh huyền \(a\) và các cạnh góc vuông \(a,\ c\).  Dùng các hệ thức \(b^2=b'.a\);   \(c^2=c'.a\) suy ra  \(b' =\dfrac{b^2}{a};\ c'=\dfrac{c^2}{a}\).

Lời giải chi tiết

Xét \(\Delta{ABC}\) vuông tại \(A\), đường cao \(AH\) có \(AB=3,\ AC=4\). Ta cần tính \(AH,\ BH\) và \(CH\).

Áp dụng định lí Pytago cho \(\Delta{ABC}\) vuông tại \(A\), ta có:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2= 3^2+4^2\)

\(\Leftrightarrow BC^2=9+16=25\)

\(\Leftrightarrow BC=\sqrt{25}= 5\).

Xét \(\Delta{ABC}\) vuông tại \(A\), đường cao \(AH\). Áp dụng các hệ thức lượng trong tam giác vuông, ta được:

*  \(AH.BC=AB.AC\)  \(\Leftrightarrow AH.5=3.4\)

\(\Leftrightarrow AH=\dfrac{3.4}{5}=2,4\)

*   \(AB^2=BH.BC\)  \(\Leftrightarrow 3^2=BH.5\)

\(\Leftrightarrow 9=BH.5\)

\(\Leftrightarrow BH=\dfrac{9}{5}=1,8\)

* \(AC^2=CH.BC\) \(\Leftrightarrow 4^2=CH.5\)

\(\Leftrightarrow 16=CH.5\)

\(\Leftrightarrow CH=\dfrac{16}{5}=3,2\)


Cùng chủ đề:

Bài 4 trang 134 SGK Toán 9 tập 2
Bài 5 trang 7 SGK Toán 9 tập 1
Bài 5 trang 11 SGK Toán 9 tập 2
Bài 5 trang 37 SGK Toán 9 tập 2
Bài 5 trang 45 SGK Toán 9 tập 1
Bài 5 trang 69 SGK Toán 9 tập 1
Bài 5 trang 69 SGK Toán 9 tập 2
Bài 5 trang 100 SGK Toán 9 tập 1
Bài 5 trang 111 SGK Toán 9 tập 2
Bài 5 trang 132 SGK Toán 9 tập 2
Bài 5 trang 134 SGK Toán 9 tập 2